2017年浙江省宁波市中考数学试卷
2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮 “泰欧”轮,其中45万吨用科学记数法表示为
A. 吨B. 吨C. 吨D. 吨
一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为
A. B. C. D.
已知直线 ,将一块含 角的直角三角板 按如图方式放置 ,其中 , 两点分别落在直线 , 上,若 ,则 的度数为
A. B. C. D.
如图,在 中, , ,以 的中点 为圆心 分别与 , 相切于 , 两点,则 的长为
A. B. C. D.
如图,四边形 是边长为6的正方形,点 在边 上, ,过点 作 ,分别交 , 于 , 两点.若 , 分别是 , 的中点,则 的长为
A.3B. C. D.4
一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形,在满足条件的所有分割中.若知道九个小矩形中 个小矩形的周长,就一定能算出这个大矩形的面积,则 的最小值是
A.3B.4C.5D.6
如图,一名滑雪运动员沿着倾斜角为 的斜坡,从 滑行至 ,已知 米,则这名滑雪运动员的高度下降了 米.(参考数据: , ,
已知 的三个顶点为 , , ,将 向右平移 个单位后, 某一边的中点恰好落在反比例函数 的图象上,则 的值为 .
如图,在菱形纸片 中, , ,将菱形纸片翻折,使点 落在 的中点 处,折痕为 ,点 , 分别在边 , 上,则 的值为 .
在 的方格纸中, 的三个顶点都在格点上.
(1)在图1中画出与 成轴对称且与 有公共边的格点三角形(画出一个即可);
(2)将图2中的 绕着点 按顺时针方向旋转 ,画出经旋转后的三角形.
大黄鱼是中国特有的地方性鱼类,有“国鱼”之称,由于过去滥捕等多种因素,大黄鱼资源已基本枯竭,目前,我市已培育出十余种大黄鱼品种,某鱼苗人工养殖基地对其中的四个品种“宁港”、“御龙”、“甬岱”、“象山港”共300尾鱼苗进行成活实验,从中选出成活率最高的品种进行推广,通过实验得知“甬岱”品种鱼苗成活率为 ,并把实验数据绘制成下列两幅统计图(部分信息未给出)
(1)求实验中“宁港”品种鱼苗的数量;
(2)求实验中“甬岱”品种鱼苗的成活数,并补全条形统计图;
(3)你认为应选哪一品种进行推广?请说明理由.
如图,正比例函数 的图象与反比例函数 的图象交于 、 两点.点 在 轴负半轴上, , 的面积为12.
(1)求 的值;
(2)根据图象,当 时,写出 的取值范围.
2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.
(1)甲种商品与乙种商品的销售单价各多少元?
(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?
在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:
如图,将矩形 的四边 、 、 、 分别延长至 、 、 、 ,使得 , ,连接 , , , .
(1)求证:四边形 为平行四边形;
(2)若矩形 是边长为1的正方形,且 , ,求 的长.
如图,抛物线 与 轴的负半轴交于点 ,与 轴交于点 ,连接 ,点 在抛物线上,直线 与 轴交于点 .
(1)求 的值及直线 的函数表达式;
(2)点 在 轴正半轴上,点 在 轴正半轴上,连接 与直线 交于点 ,连接 并延长交 于点 ,若 为 的中点.
①求证: ;
②设点 的横坐标为 ,求 的长(用含 的代数式表示).