2021年黑龙江省大庆市中考数学试卷(含答案与解析)
已知反比例函数 ,当 时, 随 的增大而减小,那么一次函数 的图象经过第
A. |
一、二、三象限 |
B. |
一、二、四象限 |
C. |
一、三、四象限 |
D. |
二、三、四象限 |
一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小正方块的个数,能正确表示该几何体的主视图的是
A. | B. | C. | D. |
如图, 是线段 上除端点外的一点,将 绕正方形 的顶点 顺时针旋转 ,得到 .连接 交 于点 .下列结论正确的是
A. |
|
B. |
|
C. |
|
D. |
|
小刚家2019年和2020年的家庭支出如下,已知2020年的总支出比2019年的总支出增加了2成,则下列说法正确的是
A. |
2020年教育方面的支出是2019年教育方面的支出的1.4倍 |
B. |
2020年衣食方面的支出比2019年衣食方面的支出增加了 |
C. |
2020年总支出比2019年总支出增加了 |
D. |
2020年其他方面的支出与2019年娱乐方面的支出相同 |
已知函数 ,则下列说法不正确的个数是
①若该函数图像与 轴只有一个交点,则 ;
②方程 至少有一个整数根;
③若 ,则 的函数值都是负数;
④不存在实数 ,使得 对任意实数 都成立.
A. |
0 |
B. |
1 |
C. |
2 |
D. |
3 |
一个圆柱形橡皮泥,底面积是 .高是 .如果这个橡皮泥的一半,把它捏成高为 的圆锥,则这个圆锥的底面积是 .
如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有 个交点.
如图,作 的任意一条直径 ,分别以 、 为圆心,以 的长为半径作弧,与 相交于点 、 和 、 ,顺次连接 、 、 、 、 、 ,得到六边形 ,则 的面积与阴影区域的面积的比值为 .
某酒店客房都有三人间普通客房,双人间普通客房,收费标准为:三人间150元 间,双人间140元 间.为吸引游客,酒店实行团体入住五折优惠措施,一个46人的旅游团,优惠期间到该酒店入住,住了一些三人间普通客房和双人间普通客房,若每间客房正好住满,且一天共花去住宿费1310元,则该旅游团住了三人间普通客房和双人间普通客房共 间.
已知,如图①,若 是 中 的内角平分线,通过证明可得 ,同理,若 是 中 的外角平分线,通过探究也有类似的性质.请你根据上述信息,求解如下问题:
如图②,在 中, , , 是 的内角平分线,则 的 边上的中线长 的取值范围是 .
小明在 点测得 点在 点的北偏西 方向,并由 点向南偏西 方向行走到达 点测得 点在 点的北偏西 方向,继续向正西方向行走 后到达 点,测得 点在 点的北偏东 方向,求 , 两点之间的距离.(结果保留 .参数数据
如图①是甲,乙两个圆柱形水槽的横截面示意图,乙槽中有一圆柱形实心铁块立放其中(圆柱形实心铁块的下底面完全落在乙槽底面上),现将甲槽中的水匀速注入乙槽,甲,乙两个水槽中水的深度 与注水时间 之间的关系如图②所示,根据图象解答下列问题:
(1)图②中折线 表示 槽中水的深度与注入时间之间的关系;线段 表示 槽中水的深度与注入时间之间的关系;铁块的高度为 .
(2)注入多长时间,甲、乙两个水槽中水的深度相同?(请写出必要的计算过程)
如图,在平行四边形 中, ,点 为线段 的三等分点(靠近点 ,点 为线段 的三等分点(靠近点 ,且 .将 沿 对折, 边与 边交于点 ,且 .
(1)证明:四边形 为矩形;
(2)求四边形 的面积.
某校要从甲,乙两名学生中挑选一名学生参加数学竞赛,在最近的8次选拔赛中,他们的成绩(成绩均为整数,单位:分)如下:
甲:92,95,96,88,92,98,99,100
乙:100,87,92,93,9■,95,97,98
由于保存不当,学生乙有一次成绩的个位数字模糊不清,
(1)求甲成绩的平均数和中位数;
(2)求事件“甲成绩的平均数大于乙成绩的平均数”的概率;
(3)当甲成绩的平均数与乙成绩的平均数相等时,请用方差大小说明应选哪个学生参加数学竞赛.
如图,一次函数 的图象与 轴的正半轴交于点 ,与反比例函数 的图象交于 , 两点.以 为边作正方形 ,点 落在 轴的负半轴上,已知 的面积与 的面积之比为 .
(1)求一次函数 的表达式;
(2)求点 的坐标及 外接圆半径的长.
如图,已知 是 的直径. 是 的弦,弦 垂直 于点 ,交 于点 .过点 作 的切线交 的延长线于点
(1)求证: ;
(2)判断 是否成立?若成立,请证明该结论;
(3)若 为 中点, , ,求 的长.