2021年湖北省随州市中考数学试卷(含答案与解析)
从今年公布的全国第七次人口普查数据可知,湖北省人口约为5700万,其中5700万用科学记数法可表示为
A. |
|
B. |
|
C. |
|
D. |
|
如图是小明某一天测得的7次体温情况的折线统计图,下列信息不正确的是
A. |
测得的最高体温为 |
B. |
前3次测得的体温在下降 |
C. |
这组数据的众数是36.8 |
D. |
这组数据的中位数是36.6 |
如图是由4个相同的小正方体构成的一个组合体,该组合体的三视图中完全相同的是
A. |
主视图和左视图 |
B. |
主视图和俯视图 |
C. |
左视图和俯视图 |
D. |
三个视图均相同 |
如图,从一个大正方形中截去面积为 和 的两个小正方形,若随机向大正方形内投一粒米,则米粒落在图中阴影部分的概率为
A. |
|
B. |
|
C. |
|
D. |
|
如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为 时,梯子顶端靠在墙面上的点 处,底端落在水平地面的点 处,现将梯子底端向墙面靠近,使梯子与地面所成角为 ,已知 ,则梯子顶端上升了
A. |
1米 |
B. |
1.5米 |
C. |
2米 |
D. |
2.5米 |
根据图中数字的规律,若第 个图中的 ,则 的值为
A. |
100 |
B. |
121 |
C. |
144 |
D. |
169 |
如图,已知抛物线 的对称轴在 轴右侧,抛物线与 轴交于点 和点 ,与 轴的负半轴交于点 ,且 ,则下列结论:① ;② ;③ ;④当 时,在 轴下方的抛物线上一定存在关于对称轴对称的两点 , (点 在点 左边),使得 ,其中正确的有
A. |
1个 |
B. |
2个 |
C. |
3个 |
D. |
4个 |
如图,在 中, , , ,将 绕点 逆时针旋转角 得到△ ,并使点 落在 边上,则点 所经过的路径长为 .(结果保留
2021年5月7日,《科学》杂志发布了我国成功研制出可编程超导量子计算机“祖冲之”号的相关研究成果.祖冲之是我国南北朝时期杰出的数学家,他是第一个将圆周率 精确到小数点后第七位的人,他给出 的两个分数形式: (约率)和 (密率).同时期数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数 的不足近似值和过剩近似值分别为 和 (即有 ,其中 , , , 为正整数),则 是 的更为精确的近似值.例如:已知 ,则利用一次“调日法”后可得到 的一个更为精确的近似分数为: ;由于 ,再由 ,可以再次使用“调日法”得到 的更为精确的近似分数 现已知 ,则使用两次“调日法”可得到 的近似分数为 .
如图,在 中, , 为 的中点, 平分 交 于点 , , 分别与 , 交于点 , ,连接 , ,则 的值为 ;若 ,则 的值为 .
疫苗接种初期,为更好地响应国家对符合条件的人群接种新冠疫苗的号召,某市教育部门随机抽取了该市部分七、八、九年级教师,了解教师的疫苗接种情况,得到如下统计表:
已接种 |
未接种 |
合计 |
|
七年级 |
30 |
10 |
40 |
八年级 |
35 |
15 |
|
九年级 |
40 |
|
60 |
合计 |
105 |
|
150 |
(1)表中, , , ;
(2)由表中数据可知,统计的教师中接种率最高的是 年级教师;(填“七”或“八”或“九”
(3)若该市初中七、八、九年级一共约有8000名教师,根据抽样结果估计未接种的教师约有 人;
(4)为更好地响应号召,立德中学从最初接种的4名教师(其中七年级1名,八年级1名,九年级2名)中随机选取2名教师谈谈接种的感受,请用列表或画树状图的方法,求选中的两名教师恰好不在同一年级的概率.
如图,一次函数 的图象与 轴、 轴分别交于点 , ,与反比例函数 的图象交于点 , .
(1)分别求出两个函数的解析式;
(2)连接 ,求 的面积.
如图, 是以 为直径的 上一点,过点 的切线 交 的延长线于点 ,过点 作 交 的延长线于点 ,垂足为点 .
(1)求证: ;
(2)若 的直径 为9, .
①求线段 的长;
②求线段 的长.
如今我国的大棚(如图 种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体 处,另一端固定在离地面高2米的墙体 处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度 (米 与其离墙体 的水平距离 (米 之间的关系满足 ,现测得 , 两墙体之间的水平距离为6米.
(1)直接写出 , 的值;
(2)求大棚的最高处到地面的距离;
(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为 米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?
等面积法是一种常用的、重要的数学解题方法.它是利用“同一个图形的面积相等”、“分割图形后各部分的面积之和等于原图形的面积”、“同底等高或等底同高的两个三角形面积相等”等性质解决有关数学问题,在解题中,灵活运用等面积法解决相关问题,可以使解题思路清晰,解题过程简便快捷.
(1)在直角三角形中,两直角边长分别为3和4,则该直角三角形斜边上的高的长为 ,其内切圆的半径长为 ;
(2)①如图1, 是边长为 的正 内任意一点,点 为 的中心,设点 到 各边距离分别为 , , ,连接 , , ,由等面积法,易知 ,可得 ;(结果用含 的式子表示)
②如图2, 是边长为 的正五边形 内任意一点,设点 到五边形 各边距离分别为 , , , , ,参照①的探索过程,试用含 的式子表示 的值.(参考数据: ,
(3)①如图3,已知 的半径为2,点 为 外一点, , 切 于点 ,弦 ,连接 ,则图中阴影部分的面积为 ;(结果保留
②如图4,现有六边形花坛 ,由于修路等原因需将花坛进行改造,若要将花坛形状改造成五边形 ,其中点 在 的延长线上,且要保证改造前后花坛的面积不变,试确定点 的位置,并说明理由.