2021年全国统一高考数学试卷(全国乙卷文科数学试卷)
以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).
某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
旧设备 |
9.8 |
10.3 |
10.0 |
10.2 |
9.9 |
9.8 |
10.0 |
10.1 |
10.2 |
9.7 |
新设备 |
10.1 |
10.4 |
10.1 |
10.0 |
10.1 |
10.3 |
10.6 |
10.5 |
10.4 |
10.5 |
旧设备和新设备生产产品的该项指标的样本平均数分别记为 和 ,样本方差分别记为 和 .
(1)求 , , , ;
(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果 ,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).
如图,四棱锥 的底面是矩形, 底面 ,M为 的中点,且 .
(1)证明:平面 平面 ;
(2)若 ,求四棱锥 的体积.
设 是首项为1的等比数列,数列 满足 .已知 , , 成等差数列.
(1)求 和 的通项公式;
(2)记 和 分别为 和 的前n项和.证明: .
已知抛物线 的焦点F到准线的距离为2.
(1)求C的方程;
(2)已知O为坐标原点,点P在C上,点Q满足 ,求直线 斜率的最大值.
在直角坐标系 中, 的圆心为,半径为1.
(1)写出 的一个参数方程;
(2)过点 作 的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.