[贵州]2011年贵州省遵义市中考数学真题试卷(解析版).doc
某种生物细胞的直径约为0.00056m,将0.00056用科学记数法表示为( )
A.0.56×10﹣3 | B.5.6×10﹣4 |
C.5.6×10﹣5 | D.56×10﹣5 |
把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为( )
A.115° | B.120° |
C.145° | D.135° |
下列运算正确的是( )
A.a2+a3=a5 | B.(a﹣2)2=a2﹣4 |
C.2a2﹣3a2=﹣a2 | D.(a+1)(a﹣1)=a2﹣2 |
今年5月,某校举行“唱红歌”歌咏比赛,有17位同学参加选拔赛,所得分数互不相同,按成绩取前8名进入决赛,若知道某同学分数,要判断他能否进入决赛,只需知道17位同学分数的( )
A.中位数 | B.众数 |
C.平均数 | D.方差 |
若一次函数y=(2﹣m)x﹣2的函数值y随x的增大而减小,则m的取值范围是( )
A.m<0 | B.m>0 |
C.m<2 | D.m>2 |
如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E,要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是( )
A.DE="DO" | B.AB=AC |
C.CD="DB" | D.AC∥OD |
如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为( )
A.5 | B.6 |
C.7 | D.12 |
将点P(﹣2,1)先向左平移1个单位长度,再向上平移2个单位长度得到点P′,则点P′的坐标为 (﹣3,3) .
如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到△ABC,则△ABC中BC边上的高是.
有一数值转换器,原理如图所示,若开始输入x的值是5,可发现第一次输出的结果是8,第二次输出的结果是4,…,请你探索第2011次输出的结果是 1 .
如图,已知双曲线,,点P为双曲线上的一点,且PA⊥x轴于点A,PB⊥y轴于点B,PA、PB分别次双曲线于D、C两点,则△PCD的面积为.
某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB=6m,∠ABC=45°,后考虑到安全因素,将楼梯脚B移到CB延长线上点D处,使∠ADC=30°(如图所示).
(1)求调整后楼梯AD的长;
(2)求BD的长.
(结果保留根号)
第六次全国人口普查工作圆满结束,2011年5月20日《遵义晚报》报到了遵义市人口普查结果,并根据我市常住人口情况,绘制出不同年龄的扇形统计图;普查结果显示,2010年我市常住人口中,每10万人就有4402人具有大学文化程度,与2000年第五次人口普查相比,是2000年每10万人具有大学文化程度人数的3倍少473人,请根据以上信息,【答案】下列问题.
(1)65岁及以上人口占全市常住人口的百分比是 9.27% ;
(2)我市2010年常住人口约为 612.7 万人(结果保留四个有效数字);
(3)与2000年我市常住人口654.4万人相比,10年间我市常住人口减少 41.67 万人;
(4)2010年我市每10万人口中具有大学文化程度人数比2000年增加了多少人?
把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.
(1)求证:△BHE≌△DGF;
(2)若AB=6cm,BC=8cm,求线段FG的长.
有四张卡片(背面完全相同),分别写有数字1、2、﹣1、﹣2,把它们背面朝上洗匀后,甲同学抽取一张记下这个数字后放回洗匀,乙同学再从中抽出一张,记下这个数字,用字母b、c分别表示甲、乙两同学抽出的数字.
(1)用列表法求关于x的方程x2+bx+c=0有实数解的概率;
(2)求(1)中方程有两个相等实数解的概率.
一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.
(1)求第一批玩具每套的进价是多少元?
(2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?
梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q分别从B、D两点同时出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA向终点A移动,线段PQ与BD相交于点E,过E作EF∥BC交CD于点F,射线QF交BC的延长线于点H,设动点P、Q移动的时间为t(单位:秒,0<t<10).
(1)当t为何值时,四边形PCDQ为平行四边形?
(2)在P、Q移动的过程中,线段PH的长是否发生改变?如果不变,求出线段PH的长;如果改变,请说明理由.