[北京]2010-2011学年北京平谷区初三第二学期第二次数学统一练习
目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000用科学记数法表示为
A. | B. | C. | D. |
在一次射击测试中,甲、乙、丙、丁四名运动员射击的平均环数均相同,而方差分别
为8.7,6.5,9.1,7.7,则这四人中,射击成绩最稳定的是
A.甲 | B.乙 | C.丙 | D.丁 |
如图,A是高为10cm的圆柱底面圆上一点,一只蜗牛从A点出发,
沿30°角绕圆柱侧面爬行,当他爬到顶上时,他沿圆柱侧面爬行的最短距离是
A.10cm | B.20cm | C.30cm | D.40cm |
在平谷区桃花节来临之际,某中学团委从八年级学生中派出160人参加街道清洁工作,除八年级团员全部参加外,还派出一些非团员参加.已知派出的非团员人数是团员人数的2倍还多人.求参加清洁工作的团员和非团员各多少人?
如图,平面直角坐标系中,直线与x轴交于点A(2,0),
与y轴交于点B, 且tan∠BAO=.
求直线的解析式
将直线绕点B旋转60°,求旋转后的直线解析式
已知:如图,∠ACB=90°,AC="BC" , AD =" BE," ∠CAD=∠CBE
(1)判断△DCE的形状,并说明你的理由;
(2)当BD:CD=1:2时,∠BDC=135°时,求sin∠BED的值.
如图,在中,,以AB为直径的交BC
于点D,DE⊥AC于点E.
求证DE是的切线;
若∠BAC=120°,AB=2,求△DEC的面积.
甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成绩进行统计后,绘制成如图12-1、图12-2的统计图.
在图12-2中画出折线表示乙队在集训期内这五场比赛成绩的变化情况;
已知甲队五场比赛成绩的平均分=90分,请你计算乙队五场比赛成绩的平均分;
如果从甲、乙两队中选派一支球队参加篮球锦标赛,根据上述统计情况,你认为选派哪支球队参赛更能取得好成绩
在长方形中画出5条线,把它分成的块数与画线的方式有直接关系.按如图1的方式画线,可以把它分成10块.
请你在图2中画出5条线,使得把这个长方形分成的块数最少(重合的线只看做一条),最少可分成 块;
请你在图2中画出5条线,使得把这个长方形分成的块数最多,最多可分成 块.
(画出图形不写画法和理由)
如图,在直角坐标平面内,函数(,是常数)
的图象经过,,其中.过点作轴垂线,
垂足为,过点作轴垂线,垂足为,连结,,.
若的面积为4,求点的坐标;
若,当时,求直线的函数的解析式.
已知:如图①,正方形ABCD中,E为对角线BD上一点,
过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
求证:EG=CG;
将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由
将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明