[北京]2011-2012学年度高三模块考试物理卷
下列三个演示实验中,能够反映出的共同的物理思想方法是
A.猜想假设的思想方法 | B.微量放大的思想方法 |
C.极限分析的思想方法 | D.建立理想化模型的思想方法 |
甲、乙两辆汽车沿平直公路从同一地点同时由静止开始向同一方向运动的v-t图象如图所示,则下列说法中正确的是
A.0-t时间内,甲的平均速度大于乙的平均速度 |
B.0-2t时间内,甲的平均速度大于乙的平均速度 |
C.t时刻两车再次相遇 |
D.在t-2t时间的某时刻内,两车再次相遇 |
如图所示,A、B两球质量均为m,它们之间用轻弹簧连接,放在光滑的水平地面上,A球与墙之间有一不可伸长的细绳,B球受到水平向右的拉力F,A、B两球均处于静止状态。现突然撤去拉力F,此瞬间A、B的加速度aA、aB的大小是
A. B.
C. D.
如图所示的电路中,开关闭合时,灯L1、L2正常发光。由于电路出现故障,灯L1突然变亮,灯L2变暗,电流表的读数变小。则发生的故障可能是
A.R1断路 |
B.R2断路 |
C.R3断路 |
D.R4断路 |
如图所示,Q1、Q2为两个等量同种正点电荷,在Q1、Q2产生的电场中有M、N和O三点,其中M和O在Q1、Q2的连线上(O为连线的中点),N为两电荷连线中垂线上的一点。则下列说法中正确的是
A.O点电势一定高于N点电势 |
B.O点场强一定小于M点场强 |
C.将一个负点电荷从M点移到N点,需克服电场力做功 |
D.若将一个正点电荷分别放在M、N和O三点,则该点电荷在O点时电势能最大 |
在军事演习中,某空降兵从悬停在空中的直升飞机上跳下,从跳离飞机到落地的过程中沿竖直方向运动的v-t图象如图所示,则下列说法正确的是
A.0~10s内空降兵和降落伞整体所受空气阻力恒定不变 |
B.第10s末重力做功的功率最大 |
C.10s-15s空降兵处于超重状态 |
D.15s后空降兵保持匀速下落,此过程中机械能守恒 |
我国已成功实现“神舟8号”飞船与“天宫1号”在太空交会对接。若对接前的某段时间内“神舟8号”和“天宫1号”处在同一圆形轨道上顺时针运行,运行周期约为91min,如图所示。下列说法中正确的是
A.和同步卫星相比,“天宫1号”的向心加速度大 |
B.“天宫1号”在此轨道运行的速度一定大于第一宇宙速度 |
C.“神舟8号”要想追上“天宫1号”实现对接,应先沿运动方向喷气,再沿与运动方向相反的方向喷气 |
D.“神舟8号”要想追上“天宫1号”实现对接,应先沿与运动方向相反的方向喷气,再沿运动方向喷气 |
如图所示,在水平力F作用下,木块A、B保持静止。若木块A与B接触面是水平的,且F≠0。则关于木块B的受力个数可能是
A.3个 B.4个 C.5个 D.6个
医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度。电磁血流计由一对电极a和b以及磁极N和S构成,磁极间的磁场是均匀的。使用时,两电极a、b均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图所示。由于血液中的正负离子随血液一起在磁场中运动,电极a、b之间会有微小电势差。在达到平衡时,血管内部的电场可看作是匀强电场,血液中的离子所受的电场力和磁场力的合力为零。在某次监测中,两触点的距离为3.0mm,血管壁的厚度可忽略,两触点间的电势差为160μV,磁感应强度的大小为0.040T。则血流速度的近似值和电极a、b的正负为
A.1.3m/s,a正、b负 | B.2.7m/s,a正、b负 |
C.1.3m/s,a负、b正 | D.2.7m/s,a负、b正 |
如图所示,卷扬机的绳索通过定滑轮用力F拉位于粗糙斜面上的木箱,使之沿斜面加速向上移动。在移动过程中,下列说法正确的是
A.F对木箱做的功等于木箱增加的机械能与木箱克服摩擦力所做的功之和 |
B.F对木箱做的功等于木箱克服摩擦力和克服重力所做的功之和 |
C.木箱增加的机械能等于力F、重力及摩擦力对木箱所做的功之和 |
D.木箱增加的动能等于力F、重力及摩擦力对木箱所做的功之和 |
测量滑块在运动过程中所受的合外力是“探究动能定理”实验要解决的一个重要问题。为此,某同学设计了如下实验方案:
A.实验装置如图所示,一端系在滑块上的细绳通过光滑的轻质定滑轮挂上钩码,用垫块将长木板固定有定滑轮和打点计时器的一端垫起。
B.将纸带穿过打点计时器并固定在滑块上,调整长木板的倾角,接通打点计时器,轻推滑块,直至滑块沿长木板向下做匀速直线运动;
C.保持长木板的倾角不变,取下细绳和钩码,换上新纸带,接通打点计时器,滑块沿长木板向下做匀加速直线运动。
请回答下列问题:
判断滑块做匀速直线运动的依据是:打点计时器在纸带上所打出点的分布应该是 ;
C中滑块在匀加速下滑过程中所受的合外力大小 钩码的重力大小(选填“大于”、“等于”或“小于”)。
现用伏安法研究某电子器件R1(6V,2.5W)的伏安特性曲线,要求特性曲线尽可能完整(直接测量的变化范围尽可能大一些),备有下列器材:
A、直流电源(6V,内阻不计);
B、电流表G(满偏电流Ig=3mA,内阻Rg=10Ω);
C、电流表A(0~0.6A,内阻未知);
D、滑动变阻器(0~20Ω,5A);
E、滑动变阻器(0~200Ω,1A);
F、定值电阻R0(阻值1990Ω);
G、开关与导线若干;
根据题目提供的实验器材,请你在方框中设计出测量电子器件R1伏安特性曲线的电路原理图(R1可用“ ”表示)。
在实验中,为了操作方便且能够准确地进行测量,滑动变阻器应选用 。(填写器材序号)
将上述电子器件R1和另一电子器件R2接入如图(甲)所示的电路中,它们的伏安特性曲线分别如图(乙)中Ob、Oa所示。电源的电动势E=6.0V,内阻忽略不计。调节滑动变阻器R3,使电阻R1和R2消耗的电功率恰好相等,则此时R3接入电路的阻值为 Ω。
如图所示,竖直面内一组合轨道由三部分组成;AB段为半径R=0.9m的半圆形,BC段水平、CD段为倾角为=45°的足够长的斜面,各部分间均平滑连接。一质量为m=0.2kg(可视为质点)的小物块,从CD段上的某点M(M距BC的高度为h)由静止释放,小物块运动中与CD段动摩擦因数为μ=0.1,AB、BC部分光滑。取g=10m/s2,求
若h=2m,小物块经圆轨道的最低点B时对轨道的压力;
h为何值时小物块才能通过圆轨道的最高点A?
质量为M=1kg足够长的木板放在水平地面上,木板左端放有一质量为m=1kg大小不计的物块,木板与地面间的动摩擦因数μ1=0.1,物块与木板间的动摩擦因数μ2=0.3。开始时物块和木板都静止,现给物块施加一水平向右的恒力F=6N,当物块在木板上滑过1m的距离时,撤去恒力F。(设最大静摩擦力与滑动摩擦力大小相等,取g=10m/s2)
求力F做的功;
求整个过程中长木板在地面上滑过的距离。
如图所示,一质量为m、电荷量为q、重力不计的微粒,从倾斜放置的平行电容器I的A板处由静止释放,A、B间电压为U1。微粒经加速后,从D板左边缘进入一水平放置的平行板电容器II,由C板右边缘且平行于极板方向射出,已知电容器II的板长为板间距离的2倍。电容器右侧竖直面MN与PQ之间的足够大空间中存在着水平向右的匀强磁场(图中未画出),MN与PQ之间的距离为L,磁感应强度大小为B。在微粒的运动路径上有一厚度不计的窄塑料板(垂直纸面方向的宽度很小),斜放在MN与PQ之间,=45°。求:
微粒从电容器I加速后的速度大小;
电容器IICD间的电压;
假设粒子与塑料板碰撞后,电量和速度大小不变、方向变化遵循光的反射定律,碰撞时间极短忽略不计,微粒在MN与PQ之间运动的时间和路程。