[广东]2012届广东省中山市高三上学期期末考试文科数学
设m,n是两条不同直线,是两个不同的平面,给出下列四个命题
①若 ②
③若 ④若
其中正确的命题是
A.① | B.② | C.③④ | D.②④ |
设,那么“”是“”的
A.必要不充分条件 | B.充分不必要条件 |
C.充要条件 | D.既不充分又不必要条件 |
如图,将的直角三角板ADC和的直角三角板ABC拼在一起组成平面四边形ABCD,其中的直角三角板的斜边AC与的直角三角板的所对的直角边重合,若,则x,y分别等于
A. | B. | C. | D. |
某校共有学生2000名,各年级男、女学生人数如右表所示,已知在全校学生中随机抽取1名,抽到高二级女生的概率是0.19,现用分层抽样的方法(按年级分层)在全校学生中抽取100人,则应在高三级中抽取的学生人数为 .
|
高一级 |
高二级 |
高三级 |
女生 |
375 |
x |
y |
男生 |
385 |
360 |
z |
已知函数的图象与函数g(x)的图象关于直线对称,令则关于函数h(x)有下列命题:
①为图象关于y轴对称; ②是奇函数;
③的最小值为0; ④在(0,1)上为减函数
其中正确命题的序号为 (注:将所有正确命题的序号都填上)
(本小题满分12分)
在△ABC中,a、b、c分别是角A、B、C所对的边,满足
(1)求角B的大小;
(2)若,求函数的值域。
(本小题满分12分)
我市某大学组建了A、B、C、D四个不同的社团组织,为培养学生的兴趣爱好,要求每个学生必须参加且只能参加一个社团,假定某寝室的甲、乙、丙三名学生对这四个社团的选择是等可能的。
(1)求甲、乙两人都参加C社团的概率;
(2)求甲、乙、丙三名学生中至少有两人参加同一社团的概率。
.
在棱长为的正方体中,
是线段的中点,底面ABCD的中心是F.
(1) 求证:^;
(2) 求证:∥平面;
(3) 求三棱锥的体积。
.(本小题满分14分)
已知数列{}满足 .
(1)证明:数列{+2}是等比数列.并求数列{}的通项公式;
(2)若数列{}满足,设是数列的前n项和.
求证:
(本小题满分14分)
国际上钻石的重量计量单位为克拉.已知某种钻石的价值y (美元)与其重量x (克拉)的平方成正比,且一颗重为3克拉的该种钻石的价值为54000美元。
(1)写出y关于x的函数关系式;
(2)若把一颗钻石切割成重量比为1∶3的两颗钻石,求价值损失的百分率;
(3)把一颗钻石切割成两颗钻石,若两颗钻石的重量分别为m 克拉和n克拉,试证明:当m="n" 时,价值损失的百分率最大。
(注:价值损失的百分率=×100% ;在切割过程中的重量损耗忽略不计)