[北京]2012届北京市丰台区高三上学期期末考试文科数学
在复平面内,复数对应的点位于( )
A.第一象限 | B.第二象限 | C.第三象限 | D.第四象限 |
已知命题p:,,命题q :,,则( )
A.命题是假命题 | B.命题是真命题 |
C.命题是假命题 | D.命题是真命题 |
预测人口的变化趋势有多种方法,“直接推算法”使用的公式是,其中Pn为预测人口数,P0为初期人口数,k为预测年内增长率,n为预测期间隔年数.如果在某一时期有-1<k<0,那么这期间人口数( )
A.呈上升趋势 | B.呈下降趋势 |
C.摆动变化 | D.不变 |
执行如右图所示的程序框图,输出的S值为( )
A.650 | B.1250 | C.1352 | D.5000 |
如图,P是正方体ABCD—A1B1C1D1对角线AC1上一动点,设AP的长度为x,若△PBD
的面积为f(x),则f(x)的图象大致是 ( )
(A) |
(B) |
(C) |
(D) |
函数的导函数为,若对于定义域内任意,,有恒成立,则称为恒均变函数.给出下列函数:①;②;③;④;⑤.其中为恒均变函数的序号是 .(写出所有满足条件的函数序号)
(本小题共13分)已知函数.
(Ⅰ)求函数的最小正周期和值域;
(Ⅱ)若为第二象限角,且,求的值.
(本小题共14分)如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC,M,N分别是CC1,AB的中点.
(Ⅰ)求证:CN⊥AB1;
(Ⅱ)求证:CN //平面AB1M.
(本小题共13分)为了解某地区中学生的身体发育状况,拟采用分层抽样的方法从甲、乙、丙三所中学抽取6个教学班进行调查.已知甲、乙、丙三所中学分别有12,6,18个教学班.
(Ⅰ)求从甲、乙、丙三所中学中分别抽取的教学班的个数;
(Ⅱ)若从抽取的6个教学班中随机抽取2个进行调查结果的对比,求这2个教学班中至少有1个来自甲学校的概率.
(本小题共13分)在平面直角坐标系xOy中,为坐标原点,以为圆心的圆与直线相切.
(Ⅰ)求圆的方程;
(Ⅱ)直线:与圆交于,两点,在圆上是否存在一点,使得四边形为菱形,若存在,求出此时直线的斜率;若不存在,说明理由.
(本小题共14分)已知函数.
(Ⅰ)若函数在,处取得极值,求,的值;
(Ⅱ)若,函数在上是单调函数,求的取值范围.