[江苏]2011-2012学年江苏省苏州市初二第二学期期中模拟考试数学卷
如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=OB:OD,则下列结论中一定正确的是 ( )
A.①与②相似 B.①与③相似
C.①与④相似 D.②与④相似
炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下列所列方程正确的是 ( )
A. | B. |
C. | D. |
要把分式方程化为整式方程,方程两边需要同时乘 ( )
A.2x(x-2) | B.2x-4 | C.2x | D.2x(x+2) |
已知反比例函数y=-,下列结论不正确的是 ( )
A.图象必经过点(-1,3) | B.y随x的增大而增大 |
C.图象位于第二、四象限内 | D.若x>1,则y>-3 |
如图,△ABC是直角三角形,S1,S2,S3为正方形,已知a,b,c分别为S1,S2,S3的边长,则( )
A.a=b+c | B.b2=ac | C.a2=b2+c2 | D.a=b+2c |
第7题 第9题 第10题
若M(2,2)和N(b,-1-n2)是反比例函数y=k/x图像上的两点,则一次函数y=kx+b的图象经过 ( )
A.第一、二、三象限 | B.第一、二、四象限 |
C.第一、三、四象限 | D.第二、三、四象限 |
如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E若四边形ODBE的面积为6,则k的值为 ( )
A.1 B.2 C.3 D.4
如图,已知∠C=90°,四边形CDEF是正方形,AC=15,BC=10,AF与ED交于点G.则EG的长为 ( )
A. | B. | C. | D. |
.把一个矩形剪去一个正方形,若余下的矩形与原矩形相似,则原矩形长宽之比为_____.
在平面直角坐标系xOy中,反比例函数y=的图象与正比例函数y=kx的图象交于点A(1,3)和点B,则点B的坐标为_______.
.设有反比例函数y=,(x1,y1)、(x2,y2)为其图象上的两点,若当x1<0<x2时,y1>y2,则k的取值范围是_______.
如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于 ______(结果保留根号).
如图,在6×8的网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.
⑴以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:2
⑵连接⑴中的AA′,求四边形AA′C′C的周长.(结果保留根号)
某工厂承担了加工2 100个机器零件的任务,甲车间单独加工了900个零件后,由于任务紧急,要求乙车间与甲车间同时加工,结果比原计划提前了12天完成任务.已知乙车间的工作效率是甲车间的1.5倍,则甲、乙两车间每天加工零件各多少个?
如图,反比例函数的图象经过点A、B,点A的坐标为(1,3),点B的纵坐标为1,点C的坐标为(2,0).
(1)求该反比例函数的关系式;
(2)求直线BC的函数关系式.
如图①,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边的活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡,改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况,实验数据记录如下表:
(1)把上表中(x,y)的各组对应值作为点的坐标,在图②中描出相应的点,用平滑曲线连接这些点;
(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式并加以验证;
(3)当砝码的质量为24 g时,活动托盘B与点O的距离是多少?
(4)将活动托盘B往左移动时,应往活动托盘B中添加还是减少砝码?
“五一”期间,为了满足广大人民的消费需求,某商店计划用160 000元购进一批家电,这批家电的进价和售价如下表:
(1)若全部资金用来购买彩电和洗衣机共100台,则商家可以购买彩电和洗衣机各多少台?
(2)若在现有资金160 000元允许的范围内,购买上表中三类家电共100台,其中彩电台数和冰箱台数相同,且购买洗衣机的台数不超过购买彩电的台数,请你算一算,共有几种进货方案?哪种进货方案能使商店销售完这批家电后获得的利润最大?并求出最大利润.(利润=售价-进价)
为了预防流感,某校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比,药物释放完毕后,y与t的函数关系式为y=(a为常数),如图所示,根据图中提供的信息,解答下面的问题:
(1)写出从药物释放开始,y与t之间的两个函数关系式及相应的自变量的取值范围;
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?