[北京]2012届北京市朝阳区高三3月第一次综合练习理科数学试卷
已知平面,直线,且,则“且”是“”的
A.充分不必要条件 | B.必要不充分条件 |
C.充分必要条件 | D.既不充分也不必要条件 |
有10件不同的电子产品,其中有2件产品运行不稳定.技术人员对它们进行一一测试, 直到2件不稳定的产品全部找出后测试结束,则恰好3次就结束测试的方法种数是( )
A. | B. | C. | D. |
已知函数是定义在上的偶函数,且对任意的,都有.当时,.若直线与函数的图象在内恰有两个不同的公共点,则实数的值是
A. | B.或 | C.或 | D.或 |
某工厂生产的种产品进入某商场销售,商场为吸引厂家第一年免收管理费,因此第一 年种产品定价为每件70元,年销售量为11.8万件. 从第二年开始,商场对种产品 征收销售额的的管理费(即销售100元要征收元),于是该产品定价每件比第一年 增加了元,预计年销售量减少万件,要使第二年商场在种产品经营中收取的管理费不少于14万元,则的最小值是
A. | B. | C. | D. |
已知点集,,点集所表示的平面区域与点集所表示的平面区域的边界的交点为.若点在点集所表示的平面区域内(不在边界上),则△的面积的最大值是
A. | B. | C. | D. |
已知△中,.一个圆心为,半径为的圆在△内,沿着△的边滚动一周回到原位. 在滚动过程中,圆至少与△的一边相切,则点到△顶点的最短距离是 ,点的运动轨迹的周长是 .
某次有1000人参加的数学摸底考试,其成绩的频率分布直方图如图所示,规定85分及其以上为优秀.
(Ⅰ)下表是这次考试成绩的频数分布表,求正整数a, b的值;
区间 |
[75,80) |
[80,85) |
[85,90) |
[90,95) |
[95,100] |
人数 |
50 |
a |
350 |
300 |
b |
(II)现在要用分层抽样的方法从这1000人中抽取40人的成
绩进行分析,求其中成绩为优秀的学生人数;
(Ⅲ)在(II)中抽取的40名学生中,要随机选取2名学生参
加座谈会,记“其中成绩为优秀的人数”为X,求X的
分布列与数学期望.
在如图所示的几何体中,四边形为平行四边形,,平面,,,,,且是的中点.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的大小;
(Ⅲ)在线段上是否存在一点,使得与所成的角为? 若存在,求出的长度;若不存在,请说明理由.
已知椭圆的两个焦点分别为,.点与椭圆短轴的两个端点的连线相互垂直.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点的坐标为,点的坐标为.过点任作直线与椭圆相交于,两点,设直线,,的斜率分别为,,,若 ,试求满足的关系式.