2010年高级中等学校招生全国统一考试数学卷(山东青岛)
(本小题满分6分)
常用的确定物体位置的方法有两种.
如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点. 请你用两种不同方法表述点B相对点A的位置.
(本小题满分6分)
(第18题) |
如图, 在平面直角坐标系中, 点A(0,8), 点B(6 , 8 ).
(1) 只用直尺(没有刻度)和圆规, 求作一个点P,使点P同时满足下
列两个条件(要求保留作图痕迹, 不必写出作法):
1)点P到A,B两点的距离相等;
2)点P到的两边的距离相等.
(2) 在(1)作出点P后, 写出点P的坐标.
(本小题满分6分)
给出下列命题:
命题1. 点(1,1)是直线y = x与双曲线y = 的一个交点;
命题2. 点(2,4)是直线y = 2x与双曲线y = 的一个交点;
命题3. 点(3,9)是直线y = 3x与双曲线y = 的一个交点;
… … .
(1)请观察上面命题,猜想出命题(是正整数);
(2)证明你猜想的命题n是正确的.
(本小题满分8分)
已知直四棱柱的底面是边长为a的正方形, 高为, 体积为V, 表面积等于S.
(1) 当a =" 2," h = 3时,分别求V和S;
(2) 当V = 12,S = 32时,求的值.
(本小题满分10分)
如图,AB = 3AC,BD = 3AE,又BD∥AC,点B,A,E在同一条直线上.
(1) 求证:△ABD∽△CAE;
(2) 如果AC =BD,AD =BD,设BD = a,求BC的长.
如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B市位于点P的北偏东75°方向上,距离点P 320千米处.
(1) 说明本次台风会影响B市;
(2)求这次台风影响B市的时间.
(本小题满分12分)
在平面直角坐标系xOy中,抛物线的解析式是y =+1,点C的坐标为(–4,0),平行四边形OABC的顶点A,B在抛物线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点P(t,0)在x轴上.
(1) 写出点M的坐标;
(2) 当四边形CMQP是以MQ,PC为腰的梯形时.
① 求t关于x的函数解析式和自变量x的取值范围;
② 当梯形CMQP的两底的长度之比为1:2时,求t的值.
下列说法中,正确的是
A.=±4 | B.-32的算术平方根是3 |
C.1的立方根是±1 | D.-是7的一个平方根 |
若8n(n为大于0的自然数)的算术平方根是整数,则正整数n的最小值为
A.1 | B.2 | C.4 | D.8 |
下列计算正确的是
A.2a5-a5=2 | B.a2·a3=a5 | C.a10÷a2=a5 | D.(a2)3=a5 |
计算(0.5×105)3×(4×103)2的结果是
A.2×1013 | B.0.5×1014 | C.2×1021 | D.8×1021 |
若(x+4)(x-2)=x2+px+q,则p、q的值是
A.2、-8 | B.-2、8 | C.-2、-8 | D.2、8 |
下列因式分解正确的是
A.x2-9=(x-3)2 | B.-1+4a2=(2a+1)(2a-1) |
C.8ab-2a2=a(8b-2a) | D.2x2-4x+2=2(x2-2x+1) |
一个正方形的边长增加了2cm,面积相应增加了32cm2,则这个正方形的边长为
A.6cm | B.5cm | C.7cm | D.8cm |
由四舍五入法得到的近似数8.8×103,下列说法中正确的是( ).
A.精确到十分位,有2个有效数字 | B.精确到个位,有2个有效数字 |
C.精确到百位,有2个有效数字 | D.精确到千位,有4个有效数字 |
某外贸公司要出口一批规格为150g的苹果,现有两个厂家提供货源,它们的价格相同,苹果的品质也相近. 质检员分别从甲、乙两厂的产品中随机抽取了50个苹果称重,并将所得数据处理后,制成如下表格. 根据表中信息判断,下列说法错误的是( ).
如图,在Rt△ABC中,∠C = 90°,∠B = 30°,BC =" 4" cm,以点C为圆心,以2 cm的长为半径作圆,则⊙C与AB的位置关系是( ).
A.相离 | B.相切 | C.相交 | D.相切或相交 |
如图,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点C按逆时针方向旋转90°,得到△,那么点A的对应点的坐标是( ).
A.(-3,3) | B.(3,-3) | C.(-2,4) | D.(1,4) |
某市为治理污水,需要铺设一段全长为300 m的污水排放管道.铺设120 m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设管道,那么根据题意,可得方程 .
一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有 个黄球
.把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB= 3 cm,BC= 5 cm,则重叠部分△DEF的面积是 cm2.
如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要 枚棋子,摆第n个图案需要 枚棋子.
(本小题满分6分)
配餐公司为某学校提供A、B、C三类午餐供师生选择,三类午餐每份的价格分别是:A餐5元,B餐6元,C餐8元.为做好下阶段的营销工作,配餐公司根据该校上周A、B、C三类午餐购买情况,将所得的数据处理后,制成统计表(如下左图);根据以往销售量与平均每份利润之间的关系,制成统计图(如下右图).
请根据以上信息,解答下列问题:
(1)该校师生上周购买午餐费用的众数是 元;
(2)配餐公司上周在该校销售B餐每份的利润大约是 元;
(3)请你计算配餐公司上周在该校销售午餐约盈利多少元?
(本小题满分6分)“五·一”期间,某书城为了吸引读者,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:读者每购买100元的书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么读者就可以分别获得45元、30元、25元的购书券,凭购书券可以在书城继续购书.
如果读者不愿意转转盘,那么可以直接获得10元的购书券.
(1)写出转动一次转盘获得45元购书券的概率;
(2)转转盘和直接获得购书券,你认为哪种方式对读者更合算?请说明理由.
(本小题满分6分)
小明家所在居民楼的对面有一座大厦AB,AB=米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B的俯角为48°.求小明家所在居民楼与大厦的距离CD的长度.(结果保留整数)
(参考数据:)
(本小题满分8分)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.
(1)求该校八年级学生参加社会实践活动的人数;
(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.
(本小题满分8分)
已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.
(1)求证:BE = DF;
(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.
(本小题满分10分)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?
(成本=进价×销售量)
(本小题满分10分)
问题再现
现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题.今天我们把正多边形的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究.
我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如图,用正方形镶嵌平面,可以发现在一个顶点O周围围绕着4个正方形的内角.
试想:如果用正六边形镶嵌平面,在一个顶点周围应该围绕 个正六边形内角.
问题提出
如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案?
问题解决
猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?
分析:我们可以将此问题转化为数学问题来解决.从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.
验证1:在镶嵌平面时,设围绕某一点有x个正方形和y个正八边形的内角可以拼成一个周角.根据题意,可得方程:
,整理得:,
我们可以找到惟一一组适合方程的正整数解为 .
结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.
猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.
上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.
问题拓广
请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.
(本小题满分12分)
已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC =" 8" cm,BC =" 6" cm,EF =" 9" cm.
如图(2),△DEF从图(1)的位置出发,以1 cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).
解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由.
(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.