[甘肃]2011-2012学年甘肃省白银市平川中恒学校高一下期中数学试卷
下列给出的赋值语句中正确的是:( )
A.3=A | B.M= —M | C.B=A=2 | D.x+y=0 |
某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。则完成(1)、(2)这两项调查宜采用的抽样方法依次是 ( )
A.分层抽样法,系统抽样法 | B.分层抽样法,简单随机抽样法 |
C.系统抽样法,分层抽样法 | D.简单随机抽样法,分层抽样法 |
下列对一组数据的分析,不正确的说法是( )
A.数据极差越小,样本数据分布越集中、稳定 |
B.数据平均数越小,样本数据分布越集中、稳定 |
C.数据标准差越小,样本数据分布越集中、稳定 |
D.数据方差越小,样本数据分布越集中、稳定 |
有五组变量:①汽车的重量和汽车每消耗1升汽油所行驶的平均路程;
②平均日学习时间和平均学习成绩;③某人每日吸烟量和其身体健康情况;
④正方形的边长和面积; ⑤汽车的重量和百公里耗油量;
其中两个变量成正相关的是( )
A.①③ | B.②④ | C.②⑤ | D.④⑤ |
已知x、y之间的一组数据如下:
x |
0 |
1 |
2 |
3 |
y |
8 |
2 |
6 |
4 |
则线性回归方程所表示的直线必经过点( )
A.(0,0) B.(1.5,5) C.(4,1.5) D.(2,2)
从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知 P(A)=" 0.65" ,P(B)="0.2" ,P(C)=0.1。则事件“抽到的不是一等品”的概率为( )
A. 0.7 B. 0.65 C. 0.35 D. 0.3
若P(A+B)=P(A)+P(B)=1, 则事件A与B的关系是( )
A. 互斥且对立 B. 对立不一定互斥
C. 互斥不一定对立 D.互斥不对立
200辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,则时速在[60,70)的汽车大约有( )
A.30辆 | B.40辆 | C.60辆 | D.80辆 |
用秦九韶算法求多项式, 当时的值的过程中,做的乘法和加法次数分别为( )
A.4,5 | B.5,4 | C.5,5 | D.6,5 |
计算机中常用16进制,采用数字0~9和字母A~F共16个计数符号与10进制得对应关系如下表:
16进制 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
A |
B |
C |
D |
E |
F |
10进制 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
例如用16进制表示D+E=1B,则A×B=( )
A、6E B、7C C、5F D、B0
甲、乙、丙三人在3天节日中值班,每人值班1天,则甲紧接着排在乙的前面值班的概率是( )
A. | B. | C. | D. |
.某校有学生2000人,其中高三学生500人,为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本,则样本中高三学生的人数为 ________.
如右图,在正方形内有一扇形(见阴影部分),扇形
对应的圆心是正方形的一顶点,半径为正方形的边长。
在这个图形上随机撒一粒黄豆,它落在扇形外正
方形内的概率为 。(用分数表示)
下列说法中正确的有________
①平均数不受少数几个极端值的影响,中位数受样本中的每一个数据影响。
②抛掷两枚硬币,出现“两枚都是正面朝上”、“两枚都是反面朝上”、“恰好一枚硬币正面朝上”的概率一样大。
③用样本的频率分布估计总体分布的过程中,样本容量越大,估计越准确。
④向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,则该随机试验的数学模型是古典概型。
为了参加奥运会,对自行车运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度的数据如表所示:请判断:谁参加这项重大比赛更合适,并阐述理由。
甲 |
27 |
38 |
30 |
37 |
35 |
31 |
乙 |
33 |
29 |
38 |
34 |
28 |
36 |
下面是计算应纳税所得额的算法过程,其算法如下:
第一步 输入工资x(注x<=5000);
第二步 如果x<=800,那么y=0;如果800<x<=1300,那么 y=0.05(x-800);
否则 y=25+0.1(x-1300)
第三步 输出税款y, 结束。
请写出该算法的程序框图和程序。(注意:程序框图与程序必须对应)
为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00—10:00间各自的点击量,得如下所示的统计图,根据统计图:
(1)甲、乙两个网站点击量的极差分别是多少?
(2)甲网站点击量在[10,40]间的频率是多少?
(3)甲、乙两个网站哪个更受欢迎?并说明理由。
(本小题满分12分)在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:
摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱。
(1)摸出的3个球为白球的概率是多少?
(2)摸出的3个球为2个黄球1个白球的概率是多少?
(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?
假设你家订了一份报纸,送报人可能在早上6点—8点之间把报纸送到你家,你每天离家去工作的时间在早上7点—9点之间
(1)你离家前不能看到报纸(称事件A)的概率是多少?(6分,须有过程)
(2)请你设计一种随机模拟的方法近似计算事件A的概率(包括手工的方法或用计算器、计算机的方法)