[广西]2012届广西融安中考二模数学试卷
如图,当半径为30cm的转动轮转过1200角时,传送带上的物体A平移的距离为( )
A.900лcm | B.300лcm |
C.60лcm | D.20лcm |
如图,正方形的边长是3cm,一个边长为1cm的小正方形沿着正方形的边连续翻转(小正方形起始位置在边上),那么这个小正方形翻转到边的终点位置时,它的方向是( )
A. B. C. D.
将二次函数的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )
A. | B. |
C. | D. |
如图,用一块直径为的圆桌布平铺在对角线长为的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度为( )
A. | B. |
C. | D. |
如图所示是二次函数的图象在轴上方的一部分,对于这段图象与轴所围成的阴影部分的面积,你认为与其最接近的值是( )
A.4 | B. | C. | D. |
如图,为圆O的四等分点,动点从圆心出发,沿路线作匀速运动,设运动时间为(t).,则下列图象中表示与t之间函数关系最恰当的是( )
用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(5)个图形中有黑色瓷砖__________块,第个图形中需要黑色瓷砖__________块(用含的代数式表示).
如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,过点D作DF⊥AB于点E,交O于点F,已知OE=1cm,DF=4cm.
求⊙O的半径
求切线CD的长
某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
已知关于的方程.
求证:无论取任何实数时,方程恒有实数根;
若为整数,且抛物线与轴两交点间的距离为2,求抛物线的解析式
若直线与(2)中的抛物线没有交点,求的取值范围.