2010年高级中等学校招生全国统一考试数学卷(湖北黄冈)
(本题满分10分,每小题5分)
请你把上面的解答再认真地检查一遍,别留下什么遗憾,并估算一下成绩是否达到了80分,如果你的全卷得分低于80分,则本题的得分将计入全卷总分,但计入后全卷总分最多不超过80分;如果你全卷得分已经达到或超过80分,则本题的得分不计入全卷总分.
(1)计算 -2 +3的结果是_ _;
(2)如图,点C在⊙O上,∠ACB=50°,则∠AOB=_ _°
若右图是某个几何体的三视图,则该几何体是( )
A.长方体 | B.三棱柱 | C.圆柱 | D.圆台 |
某班六名同学在一次知识抢答赛中,他们答对的题数分别是:7,5,6,8,7,9. 这组数据的平均数和众数分别是( )
A.7,7 | B.6,8 | C.6,7 | D.7,2 |
据2010年5月11日云南省委、省政府召开的通报会通报,全省各级各部门已筹集抗旱救灾救济资金32亿元,32亿元用科学记数法表示为 ( )
A.元 | B.元 | C.元 | D.元 |
如图,
在△ABC中,CD是∠ACB的平分线,∠A = 80°,∠ACB=60°,那么∠BDC=( )
A.80° | B.90 | C.100° | D.110° |
如图,已知圆锥侧面展开图的扇形面积为65cm2,
扇形的弧长为10cm,则圆锥母线长是( )
A.5cm | B.10cm | C.12cm | D.13cm |
如图,在△ABC中,AB = AC,AB = 8,BC = 12,分别以AB、AC为直径作半圆,则图中阴影部分的面积是( )
A. B. C. D.
如图,在△ABC中,点D、E、F分别是AB、BC、CA的中点,
若△ABC的周长为10 cm,则△DEF的周长是 cm.
如图,点A(x1,y1)、B(x2,y2)都在双曲线上,且,;分别过点A、B向x轴、y轴作垂线段,垂足分别为C、D、E、F,AC与BF相交于G点,四边形FOCG的面积为2,五边形AEODB的面积为14,那么双曲线的解析为 .
(6分)如图,点B、D、C、F在一条直线上,且BC = FD,AB = EF.
(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是 ;
(2)添加了条件后,证明△ABC≌△EFD.
某校对九年级学生进行了一次数学学业水平测试,成绩评定分为A、B、C、D四个等级(注:等级A、B、C、D分别代表优秀、良好、合格、不合格),学校从九年级学生中随机抽取50名学生的数学成绩进行统计分析,并绘制成扇形统计图(如图所示).
根据图中所给的信息回答下列问题:
(1)随机抽取的九年级学生数学学业水平测试中,D等级人数的百分率和D等级学生人数分别是多少?
(2)这次随机抽样中,学生数学学业水平测试成绩的中位数落在哪个等级?
(3)若该校九年级学生有800名,请你估计这次数学学业水平测试中,成绩达合格以上(含合格)的人数大约有多少人?
在如图所示的直角坐标系中,解答下列问题:
(1)分别写出A、B两点的坐标;
(2)将△ABC绕点A顺时针旋转90°,画出旋转后的△AB1C1;
(3)求出线段B1A所在直线 l 的函数解析式,并写出在直线l上从B1到A的自变量x 的取值范围.
热气球的探测器显示,从热气球A处看一栋高楼顶部的仰角为45°,看这栋高楼底部的俯角为60°,A处与高楼的水平距离为60m,这栋高楼有多高?(结果精确到0.1m,参考数据:)
如图,一个被等分成了3个相同扇形的圆形转盘,3个扇形分别标有数字1、3、6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停止在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).
(1)请用画树形图或列表的方法(只选其中一种),表示出分别转动转盘两次转盘自由停止后,指针所指扇形数字的所有结果;
(2)求分别转动转盘两次转盘自由停止后,指针所指扇形的数字之和的算术平方根为无理数的概率.
去年入秋以来,云南省发生了百年一遇的旱灾,连续8个多月无有效降水,为抗旱救灾,某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务. 问原计划每天修水渠多少米?
已知:如图,在梯形ABCD中,AD∥BC,∠DCB = 90°,E是AD的中点,点P是BC边上的动点(不与点B重合),EP与BD相交于点O.
(1)当P点在BC边上运动时,求证:△BOP∽△DOE;
(2)设(1)中的相似比为,若AD︰BC = 2︰3. 请探究:当k为下列三种情况时,四边形ABPE是什么四边形?①当= 1时,是 ;②当= 2时,是 ;③当= 3时,是 . 并证明= 2时的结论.
如图,坐标平面内一点A(2,-1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( )
A.2 | B.3 | C.4 | D.5 |
在△ABC中,∠C=90°,sinA=,则tanB= ( )
A. | B. | C. | D. |
如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为( )
A. | B. | C. | D.不能确定 |
已知四条直线y=kx-3,y=-1,y=3和x=1所围成的四边形的面积是12,则k的值为( )
A.1或-2 | B.2或-1 | C.3 | D.4 |
如图,在等腰梯形ABCD中,AC⊥BD,AC=6cm,则等腰梯形ABCD的面积为_____cm.
通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准每分钟是_______元.
如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是______.
如图矩形纸片ABCD,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是____________cm
将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是___________cm.
如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由。
第18题图
如图是我市某校八年级学生为玉树灾区捐款情况抽样调查的条形图和扇形统计图.
(1)求该样本的容量;
(2)在扇形统计图中,求该样本中捐款15元的人数所占的圆心角度数;
(3)若该校八年级学生有800人,据此样本求八年级捐款总数.
第19题图
如图,点P为△ABC的内心,延长AP交△ABC的外接圆于D,在AC延长线上有一点E,满足AD=AB·AE,求证:DE是⊙O的切线.
第20题图
黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?
甲、乙两同学投掷一枚骰子,用字母p、q分别表示两人各投掷一次的点数.
(1)求满足关于x的方程有实数解的概率.
(2)求(1)中方程有两个相同实数解的概率.
如图,某天然气公司的主输气管道从A市的东偏北30°方向直线延伸,测绘员在A处测得要安装天然气的M小区在A市东偏北60°方向,测绘员沿主输气管道步行2000米到达C处,测得小区M位于C的北偏西60°方向,请你在主输气管道上寻找支管道连接点N,使到该小区铺设的管道最短,并求AN的长.
第23题图
某同学从家里出发,骑自行车上学时,速度v(米/秒)与时间t(秒)的关系如图a,A(10,5),B(130,5),C(135,0).
(1)求该同学骑自行车上学途中的速度v与时间t的函数关系式;
(2)计算该同学从家到学校的路程(提示:在OA和BC段的运动过程中的平均速度分别等于它们中点时刻的速度,路程=平均速度×时间);
(3)如图b,直线x=t(0≤t≤135),与图a的图象相交于P、Q,用字母S表示图中阴影部分面积,试求S与t的函数关系式;
(4)由(2)(3),直接猜出在t时刻,该同学离开家所超过的路程与此时S的数量关系.
图a 图b
已知抛物线顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线作垂线,垂足为M,连FM(如图).
(1)求字母a,b,c的值;
(2)在直线x=1上有一点,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时△PFM为正三角形;
(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PM=PN恒成立,若存在请求出t值,若不存在请说明理由.