[浙江]2012届浙江省丽水市中考模拟试卷2数学试卷
已知数据:2,1,4,6,9,8,6,1,则这组数据的中位数是( )
A. 4 | B.6 | C. 5 | D.4和6 |
下图是用纸叠成的生活图案,其中不是轴对称图形的是( )
A.信封 | B.飞机 | C.裤子 | D.衬衣 |
若a<b , 则下列不等式中正确的是( )
A.-a> -b | B.a+b<0 | C.ac<bc | D.a-b>0 |
下列图形中,面积最大的是( )
A.边长为6的正三角形; | B.长分别为2.5、6、6.5的三角形; |
C.半径为的圆; | D.对角线长为6和8的菱形; |
已知甲、乙两地相距(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速
度(km/h)的函数关系图象大致是( )
⊙O1和⊙O2的半径分别为方程的两个根,O1O2,则⊙O1和⊙O2的位置关
系是 ( )
A.内含 | B.内切 | C.相交 | D.外切 |
如图,已知一张纸片□,,点是的中点,点是上的一个动点,沿将纸片折叠,使点落在纸片上的点处,连结,则下列各角中与不一定相等的是
A.∠FEG | B.∠AEF | C.∠EAF | D.∠EFA |
记抛物线的图象与正半轴的交点为A,将线段OA分成2012等份,设分点分别为P1, P2,…,P2011,过每个分点作轴的垂线,分别与抛物线交于点Q1,Q2,…,Q2011,再记直角三角形OP1Q1,P1P2Q2,…的面积分别为S1,S2,…,这样就记,W的值为( )
A.505766 | B.505766.5 | C.505765 | D.505764 |
在一个袋中,装有十个除数字外其它完全相同的小球,球面上分别写有1,2,3,4,5这5个数字. 小芳从袋中任意摸出一个小球,球面数字的平方根是无理数的概率是 .
函数的图象如右图所示,则结论:
①两函数图象的交点的坐标为; ②当时,;
③当时,; ④当逐渐增大时,随着的增大而增大,随着的增大而减小.
其中正确结论的序号是 .
图中所示是一条宽为1.5m的直角走廊,现有一辆转动灵活的手推车,其矩形平板面ABCD的宽AB为1m,若要想顺利推过(不可竖起来或侧翻)直角走廊,平板车的长AD不能超过___ __m.
如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E.
(1)求证:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE的度数.
阅读对人成长的影响是巨大的,一本好书往往能改变人的一生.1995年联合国教科文组织把每年4月23日确定为“世界读书日”.图2是某校三个年级学生人数分布扇形统计图,其中八年级人数为238人,表中是该校学生阅读课外书籍情况统计表.请你根据图表中的信息,解答下列问题:(1)求该校八年级的人数占全校总人数的百分率.(2)求表中的值.(3)该校学生平均每人读多少本课外书?
图书种类 |
频数 |
频率 |
科普常识 |
490 |
B |
名人传记 |
476 |
0.34 |
漫画丛书 |
A |
0.25 |
其它 |
84 |
0.06 |
一个商标图案如图,矩形ABCD中,AB=2BC,且AB=8cm,以A为圆心,AD长为半径作半圆,求商标图案的面积。
我市某品牌服装公司生产的玩具4月份每件生产成本为50元,5、6月每件玩具生产成本平均降低的百分率为x.
(1)用含x的代数式表示5月份每件玩具的生产成本;
(2)如果6月份每件生产成本比4月份少9.5元,试求x的值;
(3)该玩具5月份每件的销售价为60元,6月份每件的销售价比5月份有所下降,若下降的百分率与5、6月份每件玩具平均降低成本的百分率相同,且6月份每件玩具的销售价不低于48元,设6月份每件玩具获得的利润为y元,试求y与x的函数关系式,并确定单件利润y的最大值.(注:利润=销售价-生产成本)
丽水市在规划新城期间,欲拆除瓯江岸边的一根电线杆AB(如图),已知距电线杆AB水平距离14米处是河岸,即BD=14米,该河岸的坡面CD的坡角∠CDF的正切值为2(即tan∠CDF=2),岸高CF为2米,在坡顶C处测得杆顶A的仰角为30°,D、E之间是宽2米的人行道,请你通过计算说明在拆除电线杆AB时,为确保安全,是否将此人行道封上?(在地面上以点B为圆心,以AB长为半径的圆形区域为危险区域)
已知二次函数y=x2+bx+c与x轴交于A(-1,0)、B(1,0)两点.
(1)求这个二次函数的关系式;
(2)若有一半径为r的⊙P,且圆心P在抛物线上运动,当⊙P与两坐标轴都相切时,求半径r的值.
(3)半径为1的⊙P在抛物线上,当点P的纵坐标在什么范围内取值时,⊙P与y轴相离、相交?
如图1,在平面直角坐标系xOy中,点A,B坐标分别为(8,4),(0,4),线段CD在于x轴上,CD=3,点C从原点出发沿x轴正方向以每秒1个单位长度向右平移,点D随着点C同时同速同方向运动,过点D作x轴的垂线交线段AB于点E,交OA于点G,连结CE交OA于点F. 设运动时间为t,当E点到达A点时,停止所有运动.
(1)求线段CE的长;
(2)记S为RtΔCDE与ΔABO的重叠部分面积,试写出S关于t函数关系式及t的取值范围;
(3)如图2,连结DF,
1当t取何值时,以C,F,D为顶点的三角形为等腰三角形?
2直接写出ΔCDF的外接圆与OA相切时t的值.