[北京]2012届北京市高三压轴文科数学试卷
已知命题:函数恒过(1,2)点;命题:若函数为偶函数,则的图像关于直线对称,则下列命题为真命题的是
A. | B. | C. | D. |
如图,三棱锥底面为正三角形,侧面与底面垂直且,已知其主视图的面积为,则其左视图的面积为
A. | B. | C. | D. |
函数的图象上存在不同的三点到原点的距离构成等比数列,则以下不可能成为该数列的公比的数是( )
A. | B. | C. | D. |
第二部分 (非选择题 共110分)
若集合满足,则称为集合的一种拆分.已知:
①当时,有种拆分;
②当时,有种拆分;
③当时,有种拆分;
……
由以上结论,推测出一般结论:当有_____________种拆分.
下面给出的四个命题中:
①以抛物线y2=4x的焦点为圆心,且过坐标原点的圆的方程为;
②若,则直线与直线相互垂直;
③命题 “,使得”的否定是“,都有”;
④将函数的图象向右平移个单位,得到函数的图象。
其中是真命题的有 (将你认为正确的序号都填上)。
(本小题共13分)
已知向量,设函数.
(Ⅰ)求函数在上的单调递增区间;
(Ⅱ)在中,,,分别是角,,的对边,为锐角,若,,的面积为,求边的长.
(本小题共13分)
某小区在一次对20岁以上居民节能意识的问卷调查中,随机抽取了100份问卷进行统计,得到相关的数据如下表:
(1)由表中数据直观分析,节能意识强弱是否与人的年龄有关?
(2)据了解到,全小区节能意识强的人共有350人,估计这350人中,年龄大于50岁的有多少人?
(3)按年龄分层抽样,从节能意识强的居民中抽5人,再从这5人中任取2人,求恰有1人年龄在20至50岁的概率。
(本小题共14分)
如图所示多面体中,AD⊥平面PDC,ABCD为平行四边形,E,F分别为AD,BP的中点,AD=,AP=,PC=.
(Ⅰ)求证:EF∥平面PDC;
(Ⅱ)若∠CDP=90°,求证BE⊥DP;
(Ⅲ)若∠CDP=120°,求该多面体的体积.
(本小题共14分)
已知函数.
(Ⅰ)若函数的图象在处的切线斜率为,求实数的值;
(Ⅱ)求函数的单调区间;
(Ⅲ)若函数在上是减函数,求实数的取值范围.