[江西]2012届江西省南昌市十四校九年级第一次联考数学试卷
已知函数①,②,③,④,
⑤,其中二次函数的个数为( ).
A.1 | B.2 | C.3 | D.4 |
如图,如果正方形ABCD旋转后能与正方形CDEF重合,那么,图形所在平面内,可作为旋转中
心的点有( )
A.1个 | B.2个 | C.3个 | D.4个 |
如图 ,是某几何体的三视图及相关数据,则判断正确的是( )
A.a>c | B.b>c | C.4a2+b2=c2 | D.a2+b2=c2 |
如图,△ABC的顶点都是正方形网格中的格点,则sin∠ABC等于( )
A. | B. | C. | D. |
函数y=ax2+bx+c的图象如图所示,那么关于x的一元二次方程ax2+bx+c-3=0的根的情况是( )
A.有两个不相等的实数根 | B.有两个异号的实数根 |
C.有两个相等的实数根 | D.没有实数根 |
二次函数y=ax2+bx+c的图象如图所示,若M=4a+2b+c,N=a-b+c,P=4a+2b则( )
A.M>0,N>0,P>0 | B.M>0,N<0,P>0 |
C.M<0,N>0,P>0 | D.M<0,N>0,P<0 |
如图,若A、B、C、D、E,甲、乙、丙、丁都是方格纸中的格点,为使△ABC与△DEF相似,则点F应是甲、乙、丙、丁四点中的( ).
A、甲 B、乙 C、丙 D、丁
如图,在我校第二届校运会上,九(2)班胡超同学在跳远比赛中跳出了满意一跳,函数h=3.5t-4.9t2(t的单位:s;h的单位:m)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是
A.0.71s | B.0.70s | C.0.63s | D.0.36s |
两圆的圆心都在x轴上,且两圆相交于A,B两点,点A的坐标是(3,2),那么点B的坐标为
将两块直角三角尺的直角顶点重合为如图所示的形状,若∠AOD=127°,则∠BOC=_______.
如上图 若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共
有 桶.
请你选择你喜欢的a、b、c值,使二次函数y=ax2+bx+c(a≠0)的图象同时满足下列条件:
①开口方向向下;②当x<2时,y随x的增大而增大;当x>2时,y随x的增大而减小.这样的二次函数的解析式可以为 .
如图,在直角坐标系中有两点A(4,0)、B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为 或 时,使得由点B、O、C组成的三角形与△AOB相似(至少找出两个满足条件的点的坐标).
如图,两个半径都是4cm的圆外切于点C,一只蚂蚁由点A开始依ABCDEFCGA的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这8段路径上不断地爬行,直到行走2012πcm后才停下来.请问这只蚂蚁停在 点.
某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.
(1)写出所有选购方案(利用树状图或列表方法表示);
(2)如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?
(3)现知希望中学购买甲、乙两种品牌电脑共36台(价格如图20所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台.
如图所示,一段街道的两边缘所在直线分别为AB、PQ,并且AB∥PQ.建筑物的一端DE所在的
直线MN⊥AB于点M,交PQ于点N.小亮从胜利街的A处,沿着AB方向前进,小明一直站在点P的位置等
候小亮.
(1)请你在图中画出小亮恰好能看见小明时的视线,以及此时小亮所在位置(用点C标出);
(2)已知:MN=20m,MD=8m,PN=24m,求(1)中的点C到胜利街口的距离CM.
如图,⊙O的直径6cm,是延长线上的一点,过点作⊙O的切线,切点为,连
接。
(1)若30°,求PC的长;
(2)若点在的延长线上运动,的平分线交于点,你认为∠的大小是否发生变化?若变化,请说明理由;若不变,求出∠的值。
为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE.(精确到0.1m)
(下列数据提供参考:20°=0.3420,20°=0.9397,20°=0.3640)
如图,在水平面上放置一圆锥,在圆锥顶端斜靠着一根木棒(木棒的厚度可忽略不计)
小明为了探究这个问题,将此情景画在了草稿纸上(如右图所示):运动过程:木棒顶端从A点开始沿圆锥的母线下滑,速度为(木棒下滑为匀速)已知木棒与水平地面的夹角为,随木棒的下滑而不断减小。的最大值为30°,若木棒长为。问:当木棒顶端从A滑到B这个过程中,木棒末端的速度为多少?
某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种圭特产,且必须装满.根据下表提供的信息,解答以下问题:
土特产种类 |
甲 |
乙 |
丙 |
每辆汽车运载量(吨) |
8 |
6 |
5 |
每吨土特产获利(百元) |
12 |
16 |
10 |
(1)设装运甲种土特产的车辆数为,装运乙种土特产的车辆数为,求与之间的函数关系式.
(2)如果装运每辆土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.
(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.
已知抛物线与x轴交于两点、,与y轴交于点C,AB=6.
(1)求抛物线和直线BC的解析式.
(2)在给定的直角坐标系中,画出抛物线和直线BC.
(3)若⊙P过A、B、C三点,求⊙P的半径.
(4)抛物线上是否存在点M,过点M作轴于点N,使被直线BC分成面积比为的两部
分?若存在,请求出点M的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,直角梯形的边落在轴的正半轴上,且∥,,=4,=6,=8.正方形的两边分别落在坐标轴上,且它的面积等于直角梯形面积。将正方形沿轴的正半轴平行移动,设它与直角梯形的重叠部分面积为。
(1)分析与计算:
求正方形的边长;
(2)操作与求解:
①正方形平行移动过程中,通过操作、观察,试判断(>0)的变化情况是 ;
A.逐渐增大 | B.逐渐减少 | C.先增大后减少 | D.先减少后增大 |
②当正方形顶点移动到点时,求的值;
(3)探究与归纳:
|
设正方形的顶点向右移动的距离为,求重叠部分面积与的函数关系式。