[山东]2011-2012学年山东冠县武训高中高二下第二次模块考试文科数学试卷
“所有金属都能导电,铁是金属,所以铁能导电”这种推理属于
A.演绎推理 | B.类比推理 | C.合情推理 | D.归纳推理 |
复数(是虚数单位),则复数虚部是
A.-1+2 | B.-1 | C.2 | D.2 |
集合,那么“”是“”
A.充分不必要条件 | B.必要不充分条件 |
C.充要条件 | D.既不充分也不必要条件 |
如图是2012年某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别是
A.84,4.84 | B.84,1.6 | C.85,1.6 | D.85,4 |
变量与相对应的一组数据为(10, 1), (11.3, 2), (11.8, 3), (12.5, 4), (13, 5);变量与相对应的一组数据为(10,5), (11.3, 4), (11.8, 3), (12.5, 2), (13, 1),表示变量与之间的线性相关系数,表示变量与之间的线性相关系数,则
A. | B. | C. | D. |
已知某生产厂家的年利润(单位:万元)与年产量(单位:万件)的函数关系式为,则使该生产厂家获取最大年利润的年产量为
A.13万件 | B. 11万件 | C. 9万件 | D.7万件 |
圆形纸片的圆心为,点是圆内异于点的一定点,点是周围上一点,把纸片折叠使与点重合,然后展平纸片,折痕与交于点,当点运动时点的轨迹是
A.圆 | B.椭圆 | C.双曲线 | D.抛物线 |
设三次函数的导函数为,函数的图象的一部分如图所示,则
A.极大值为,极小值为 |
B.极大值为,极小值为 |
C.极大值为,极小值为 |
D.极大值为,极小值为 |
若点和点F(-2,0)分别是双曲线的中心和左焦点,点为双曲线右支上任意一点,则的取值范围是
A. | B. | C. | D. |
某校高三有1000个学生,高二有1200个学生,高一有1500个学生,现按年级分层抽样,调查学生的视力情况,若高一抽取75人,则全校共抽取 人.
已知命题“”,命题“”,若命题“且”是真命题,则命题“且”是真命题 .
为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到了如下列联表
|
喜爱打篮球 |
不喜爱打篮球 |
合计 |
男生 |
20 |
5 |
25 |
女生 |
10 |
15 |
25 |
合计 |
30 |
20 |
50 |
则至少有 的把握认为喜爱打篮球与性别有关(请用百分数表示).
附
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
过抛物线的焦点作直线交抛物线于两点,线段的中点的纵坐标为2,则线段长为 .
某市地铁全线共有四个车站,甲、乙两人同时在地铁第1号车站(首发站)乘车,假设每人自第2号站开始,在每个车站下车是等可能的,约定用有序实数对表示“甲在号车站下车,乙在号车站下车”
(1)用有序实数对把甲、乙两人下车的所有可能的结果列举出来;
(2)求甲、乙两人同在第3号车站下车的概率;
(3)求甲、乙两人在不同的车站下车的概率.
某校高二(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.
(1)求全班人数,并求出分数在之间的频数;
(2)估计该班的平均分数,并计算频率分布直方图中间的矩形的高.
已知椭圆的离心率,它的一个焦点与抛物线的焦点重合,过椭圆右焦点作与坐标轴不垂直的直线,交椭圆于两点.
(1)求椭圆标准方程;
(2)设点,且,求直线方程.