[江苏]2007年初中毕业升学考试(江苏常州卷)数学
在校园歌手大赛中,七位评委对某位歌手的打分如下:9.8,9.5,9.7,9.6,9.5,9.5,9.6,则这组数据的平均数是 ,极差是 .
如图,已知DE∥BC,AD=5,DB=3,BC=9.9,∠B=50°,则∠ADE= °,DE= , .
下列轴对称图形中,对称轴的条数最少的图形是( )
A.圆 | B.正六边形 | C.正方形 | D.等边三角形 |
袋中有3个红球,2个白球,若从袋中任意摸出1个球,则摸出白球的概率是( )
A. | B. | C. | D. |
如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是( )
A.第3分时汽车的速度是40千米/时 |
B.第12分时汽车的速度是0千米/时 |
C.从第3分到第6分,汽车行驶了120千米 |
D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时 |
小明和小莉出生于1998年12月份,他们的出生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是( )
A.15号 | B.16号 | C.17号 | D.18号 |
如图,在中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ长度的最小值是( )
A. | B. | C. | D. |
已知,如图,延长的各边,使得,,顺次连接,得到为等边三角形.
求证:(1);
(2)为等边三角形.
图1是某市2007年2月5日至14日每天最低气温的折线统计图.
(1)图2是该市2007年2月5日至14日每天最高气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;
(2)在这10天中,最低气温的众数是 ,中位数是 ,方差是 .
口袋中装有2个小球,它们分别标有数字和;口袋中装有3个小球,它们分别标有数字,和.每个小球除数字外都相同.甲、乙两人玩游戏,从两个口袋中随机地各取出1个小球,若两个小球上的数字之和为偶数,则甲赢;若和为奇数,则乙赢.这个游戏对甲、乙双方公平吗?请说明理由.
如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.
(1)设菱形相邻两个内角的度数分别为和,将菱形的“接近度”定义为,于是,越小,菱形越接近于正方形.
①若菱形的一个内角为,则该菱形的“接近度”等于 ;
②当菱形的“接近度”等于 时,菱形是正方形.
(2)设矩形相邻两条边长分别是和(),将矩形的“接近度”定义为,于是越小,矩形越接近于正方形.
你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.
已知经过,,,四点,一次函数的图象是直线,直线与轴交于点.
(1)在右边的平面直角坐标系中画出,直线与的交点坐标为 ;
(2)若上存在整点(横坐标与纵坐标均为整数的点称为整点),使得为等腰三角形,所有满足条件的点坐标为 ;
(3)将沿轴向右平移 个单位时,与相切.
学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:
用于购买奖品的总费用不少于1000元但不超过1100元,小明在购买“福娃”和微章前,了解到如下信息:
(1)求一盒“福娃”和一枚徽章各多少元?
(2)若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?
已知,如图,正方形的边长为6,菱形的三个顶点分别在正方形边上,,连接.
(1)当时,求的面积;
(2)设,用含的代数式表示的面积;
(3)判断的面积能否等于,并说明理由.