[山东]2008年初中毕业升学考试(山东潍坊卷)数学
下列运算正确的是( )
A.x5-x3=x2 | B.x4(x3)2=x10 | C.(-x12)÷(-x3)=-x9 | D.(-2x)2x-3=8 |
如图,梯形ABCD中,AD∥BC,AD=AB,BC=BD,∠A=100°,则∠C=( )
A.80° | B.70° | C.75° | D.60° |
某蓄水池的横断面示意图如右图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图像能大致表示水的深度h和放水时间t之间的关系的是( )
如图,Rt△ABAC中,AB⊥AC,AB=3,AC=4,P是BC边上一点,作PE⊥AB于E,PD⊥AC于D,设BP=x,则PD+PE=( )
A. | B. | C. | D. |
时代中学周末有40人去体育场观看足球赛,40张票分别为B区第2排1号到40号,分票采用随机抽样的办法,小明第一个抽取,他抽取的座号为10号,接着小亮从其余的票任意抽取一张,取得的一张票恰好与小明邻座的概率是( )
A. | B. | C. | D. |
如图, Rt△ABC中,AB⊥AC,AD⊥BC,平分∠ABC,交AD于E,EF∥AC,下列结论一定成立的是( )
A.AB="BF" | B.AE=ED | C.AD=DC | D.∠ABE=∠DFE, |
如图,△ABC内接于圆O,∠A=50°,∠ABC=60°,BD是圆O的直径,BD交AC于点E,连结DC,则∠AEB等于( )
A.70° | B.110° | C.90° | D.120° |
已知反比例函数,当x>0时,y随x的增大而增大,则关于x的方程的根的情况是( )
A.有两个正根 | B.有两个负根 | C.有一个正根一个负根 | D.没有实数根 |
在平行四边形ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别AB和CD的五等分点,点B1、B2、B3和D1、D2、D3分别是BC和DA的三等分点,已知四边形A4 B2 C4 D2的积为1,则平行四边形ABCD面积为( )
A.2 | B. | C. | D.15 |
若一次函数的图像过第一、三、四象限,则函数( )
A.有最大值 | B.有最大值 | C.有最小值 | D.有最小值 |
下面每个图是由若干个圆点组成的形如四边形的图案,当每条边(包括顶点)上有n(n≥2)个圆点时,图案的圆点数为Sn,按此规律推算Sn 关于n的关系式为:__________________.
如图在平面直角坐标系中,Rt△OAB的顶点A的坐标为(,1),若将△OAB 逆时针旋转600后,B点到达B/点,则B/点的坐标是_____________。
国际奥委会2003年6月29日决定,2008年北京奥运会的举办日期由7月25日至8月10日推迟至8月8日至24日,原因与北京地区的气温有关,为了了解这段时间北京的气温分布状况,相关部门对往年7月25日至8月24日的日最高气温进行抽样,得到如下样本数据:
(1)分别写出7月25日至8月10日和8月8日至8月24日两时间段的两组日最高气温样本数据的中位数和众数;
(2)若日最高气温33 o C(含33 o C)以上为高温天气,根据以上数据预测北京2008年7月25日至8月10日和8月8日至24日期间分别出现高温天气的概率是多少?
(3)根据(1)和(2)得到的数据,对北京奥运会的举办日期因气温原因由7月25日至8月10日推迟至8月8日至24日做出解释。
为了美化校园环境,建设绿色校园,某学校准备对校园中30亩空地进行绿化..绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的.已知种植草皮与种植树木每亩的费用分别为8000元与12000元.
(1)种植草皮的最小面积是多少?
(2)种植草皮的面积为多少时绿化总费用最低?最低费用为多少?
如图,AC是圆O的直径,AC=10厘米,PA,PB是圆O的切线,A,B为切点,过A作AD⊥BP,交BP于D点,连结AB、BC.
(1)求证△ABC∽△ADB;
(2)若切线AP的长为12厘米,求弦AB的长.
如图,ABCD为平行四边形,AD=a,BE∥AC,DE交AC的延长线于F点,交BE于E点.
(1) 求证:DF="FE;"
(2) 若AC=2CF,∠ADC=60 o, AC⊥DC,求BE的长;
(3) 在(2)的条件下,求四边形ABED的面积.
一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平。
(1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元?
(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等?
(3)求使用回收净化设备后两年的利润总和。
如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG=10.
(1)当折痕的另一端F在AB边上时,如图(1).求△EFG的面积.
(2)当折痕的另一端F在AD边上时,如图(2).证明四边形BGEF为菱形,并求出折痕GF的长.