2012年苏教版高中数学选修1-1 2.4抛物线练习卷
已知抛物线的顶点在原点,焦点在y轴上,其上的点到焦点的距离为5,则抛物线方程为 ( )
A. | B. | C. | D. |
顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 ( )
A.或 | B.或 |
C. | D. |
抛物线上有三点,是它的焦点,若 成等差数列,则 ( )
A.成等差数列 | B.成等差数列 |
C.成等差数列 | D.成等差数列 |
若点A的坐标为(3,2),为抛物线的焦点,点是抛物线上的一动点,则 取得最小值时点的坐标是 ( )
A.(0,0) | B.(1,1) | C.(2,2) | D. |
已知抛物线的焦点弦的两端点为,,则关系式
的值一定等于 ( )
A.4p | B.-4 | C.p2 | D.-p |
过抛物线的焦点F作一直线交抛物线于P,Q两点,若线段PF与FQ的长分别是,则 ( )
A. | B. | C. | D. |
若AB为抛物线y2=2px (p>0)的动弦,且|AB|=a (a>2p),则AB的中点M到y轴的最近距离是 ( )
A.a | B.p | C.a+p | D.a-p |
对于顶点在原点的抛物线,给出下列条件;
(1)焦点在y轴上; (2)焦点在x轴上;
(3)抛物线上横坐标为1的点到焦点的距离等于6;(4)抛物线的通径的长为5;
(5)由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).
其中适合抛物线y2=10x的条件是(要求填写合适条件的序号) ______.
已知点A(2,8),B(x1,y1),C(x2,y2)在抛物线上,△ABC的重心与此抛物线的焦点F重合(如图)
(1)写出该抛物线的方程和焦点F的坐标;
(2)求线段BC中点M的坐标;
(3)求BC所在直线的方程.
抛物线x2=4y的焦点为F,过点(0,-1)作直线L交抛物线A、B两点,再以AF、BF为邻边作平行四边形FARB,试求动点R的轨迹方程.
已知抛物线C:,过C上一点M,且与M处的切线垂直的直线称为C在点M的法线.
(1)若C在点M的法线的斜率为,求点M的坐标(x0,y0);
(2)设P(-2,a)为C对称轴上的一点,在C上是否存在点,使得C在该点的法线通过点P?若有,求出这些点,以及C在这些点的法线方程;若没有,请说明理由.
已知抛物线y2=4ax(0<a<1=的焦点为F,以A(a+4,0)为圆心,|AF|为半径在x轴上方作半圆交抛物线于不同的两点M和N,设P为线段MN的中点.
(1)求|MF|+|NF|的值;
(2)是否存在这样的a值,使|MF|、|PF|、|NF|成等差数列?如存在,求出a的值,若不存在,说明理由.