[上海]2013届上海市金山区高三上学期期末考试数学试卷
若全集U=R,集合A={x| –2≤x≤2},B={x| 0<x<1},则A∩CUB= .
A、B、C三所学校共有高三学生1500人,且A、B、C三所学校的高三学生人数成等差数列,在一次联考后,准备用分层抽样的方法从所有高三学生中抽取容量为120的样本,进行成绩分析,则应从B校学生中抽取_________人.
双曲线C:x2 – y2 = a2的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A、B两点,,则双曲线C的方程为__________.
把一颗骰子投掷两次,第一次出现的点数记为,第二次出现的点数记为,方程组只有一组解的概率是_________.(用最简分数表示)
若函数y=f(x) (x∈R)满足:f(x+2)=f(x),且x∈[–1, 1]时,f(x) =" |" x |,函数y=g(x)是定义在R上的奇函数,且x∈(0, +∞)时,g(x) =" log" 3 x,则函数y=f(x)的图像与函数y=g(x)的图像的交点个数为_______.
若实数a、b、c成等差数列,点P(–1, 0)在动直线l:ax+by+c=0上的射影为M,点N(0, 3),则线段MN长度的最小值是 .
已知f(x)=x2–2x+3,g(x)=kx–1,则“| k |≤2”是“f(x)≥g(x)在R上恒成立”的 ( )
A.充分但不必要条件 | B.必要但不充分条件 |
C.充要条件 | D.既不充分也不必要条件 |
给定方程:,下列命题中:(1) 该方程没有小于0的实数解;(2) 该方程有无数个实数解;(3) 该方程在(–∞,0)内有且只有一个实数解;
(4) 若x0是该方程的实数解,则x0>–1.
则正确命题的个数是 ( )
A.1 | B.2 | C.3 | D.4 |
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求实数a的取值范围.
(本题满分14分,第1小题6分,第2小题8分)
已知函数,x∈R,且f(x)的最大值为1.
(1) 求m的值,并求f(x)的单调递增区间;
(2) 在△ABC中,角A、B、C的对边a、b、c,若,且,试判断△ABC的形状.
(本题满分14分,第1小题6分,第2小题8分)
已知函数,其中常数a > 0.
(1) 当a = 4时,证明函数f(x)在上是减函数;
(2) 求函数f(x)的最小值.
(本题满分16分,第1小题4分,第2小题6分,第3小题6分)
设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1、F2,线段OF1、OF2的中点分别为B1、B2,且△AB1B2是面积为的直角三角形.过B1作直线l交椭圆于P、Q两点.
(1) 求该椭圆的标准方程;
(2) 若,求直线l的方程;
(3) 设直线l与圆O:x2+y2=8相交于M、N两点,令|MN|的长度为t,若t∈,求△B2PQ的面积的取值范围.