[甘肃]2013届甘肃省河西五市部分普通高中高三第一次联合考试文科数学试卷
设集合M={x∣x<2},集合N={x∣0<x<1},则下列关系中正确的是( )
A. M∪N=R | B. M∪СRN=R | C. N∪СRM=R | D. M∩N=M |
已知两点,点是圆上任意一点,则面积的最小值是( ).
A. | B. | C. | D. |
已知双曲线的右焦点是F, 过点F且倾角为600的直线与双曲线的右支有且只有一个交点,则此双曲线的离心率的范围是( )
A. | B.(1,2) | C. | D. |
一空间几何体的三视图如图,则该几何体的体积为( )
A. | B. |
C. | D. |
已知O是坐标原点,,若点为平面区域上一动点,则的取值范围是( )
A. | B. | C. | D. |
已知三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心,则与底面所成角的正弦值等于( )
A. | B. | C. | D. |
在函数数列{}是等比数列,则函数的解析式可能为( )
A. | B. |
C. | D. |
(本小题满分12分)在数列中,,并且对于任意n∈N*,都有.
(1)证明数列为等差数列,并求的通项公式;
(2)设数列的前n项和为,求使得的最小正整数.
(本小题满分12分)
某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:.
(1)求图中x的值;
(2)从成绩不低于80分的学生中按分层抽样抽取4人,选其中2人为数学课代表,求这两个人的数学成绩不在同一分数段的概率。
(本小题满分12分)
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,BCD=60,E是CD的中点,PA底面ABCD,PA=2.
(1)证明:平面PBE平面PAB;
(2)求PC与平面PAB所成角的余弦值。
(本小题满分12分)
抛物线的顶点在原点,焦点在x轴的正半轴上,直线x+y-1=0与抛物线相交于A、B两点,
且。
(1) 求抛物线方程;
(2) 在x轴上是否存在一点C,使得三角形ABC是正三角形? 若存在,求出点C的坐标,若不存在,说明理由.
(本小题满分12分)
已知函数.
(Ⅰ)若函数在,处取得极值,求,的值;
(Ⅱ)若,函数在上是单调函数,求的取值范围.
(本小题满分10分)
如图,四边形ACBD内接于圆O,对角线AC与BD相交于M,AC⊥BD,E是DC中点连结EM交AB于F,作OH⊥AB于HH,
求证:(1)EF⊥AB (2)OH=ME
(本小题满分10分)
已知直线l经过点P(,1),倾斜角,在极坐标系下,圆C的极坐标方程为。
(1)写出直线l的参数方程,并把圆C的方程化为直角坐标方程;
(2)设l与圆C相交于A,B两点,求点P到A,B两点的距离之积。