[北京]2013届北京市怀柔区九年级上学期期末考试数学试卷
中国旅游研究院最近发布报告称,2012年中国出境旅游人数8200万人次,8200万用科学计数法表示为( )
A.82×106 | B.8.2×106 | C.8.2×107 | D.8.2×108 |
把抛物线向左平移1个单位,然后向上平移3个单位,则平移后抛物线的表达式( )
A. | B. |
C. | D.. |
如图,在△ABC中,∠C=900,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为( )
A.3 | B.4 | C.5 | D.6 |
如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是( )
A.AE=OE | B.CE=DE | C.OE=CE | D.∠AOC=60° |
如图,点C、D是以线段AB为公共弦的两条圆弧的中点,AB=4,点E、F分别是线段CD、AB上的动点,设AF=x,AE2-FE2=y,则能表示y与x的函数关系的图象是( )
如图,已知抛物线y=ax2+bx+c(a≠0)经过原点和点(-2,0),则2a-3b 0.(填>、<或=)
如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(秒)(0≤t<3),连结EF,当t值为________秒时,△BEF是直角三角形.
已知:如图,在平面直角坐标系中,直线与轴交于点,与反比例函数在第一象限内的图象交于点,连结,若.求该反比例函数的解析式和直线的解析式.
已知反比例函数y=的图象与二次函数y=ax2+x-1的图象相交于点A(2,2)
(1)求a的值;
(2)反比例函数的图象是否经过二次函数图象的顶点,请说明理由.
如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连结BD并延长与CE交于点E.
(1)求证:△ABD∽△CED;
(2)若AB=6,AD=2CD,求BE的长.
如图,⊙O的直径AB长为6,弦AC长为2,∠ACB的平分线交⊙O于点D,求四边形ADBC的面积.
某学生参加社会实践活动,在景点P处测得景点B位于南偏东方向,然后沿北偏东方向走100米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与景点B之的距离.
如图①,为⊙的直径,与⊙相切于点,与⊙相切于点,点为延长线上一点,且CE=CB.
(1)求证:为⊙的切线;
(2)如图②,连接AE,AE的延长线与BC的延长线交于点G.若,求线段BC和EG的长.
小赵投资销售一种进价为每件20元的护眼台灯.销售过程中发现,月内销售单价不变,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数.
(1)设小赵每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?并求出最大利润.
(2)如果小赵想要每月获得的利润不低于2000元,那么如何制定销售单价才可以实现这一目标?
操作与实践:
(1)在图①中,以线段m为一边画菱形,要求菱形的顶点均在格点上.(画出所有符合条件的菱形)
(2)在图②中,平移a、b、c中的两条线段,使它们与线段n构成以n为一边的等腰直角三角形.(画一个即可)
如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶点为M(2,-1),交x轴于A、B两点,交y轴于点C,其中点B的坐标为(3,0).
(1)求该抛物线的解析式;
(2)设经过点C的直线与该抛物线的另一个交点为D,且直线CD和直线CA关于直线BC对称,求直线CD的解析式;
(3)在该抛物线的对称轴上存在点P,满足PM2+PB2+PC2=35,求点P的坐标.
已知,如图①,∠MON=60°,点A、B为射线OM、ON上的动点(点A、B不与点O重合),且AB=,在∠MON的内部、△AOB的外部有一点P,且AP=BP,∠APB=120°.
(1)求AP的长;
(2)求证:点P在∠MON的平分线上;
(3)如图②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,PA的中点,连接CD,DE,EF,FC,OP.
①当AB⊥OP时,请直接写出四边形CDEF的周长;
②若四边形CDEF的周长用t表示,请直接写出t的取值范围.