[河北]2013届河北省石家庄市高三下学期第二次质量检测文科数学试卷
中心在坐标原点的椭圆,焦点在x轴上,焦距为4,离心率为,则该椭圆的方程为
A. | B. | C. | D. |
在△ABC中,角A,B,C所对的边长分别为a,b,c,且asinAsinB+bcos2A=a,则的值为
A.1 | B. | C. | D.2 |
已知向量的夹角为45°,且||=1,|2-|=,则||=
A.3 | B.2 | C. | D.1 |
设(x1,y1),(x2,y2),…,(xn,yn),是变量x:和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归方程(如图),以下结论中正确的是
A. x;和y正相关 |
B. x和y的相关系数为直线l的斜率 |
C. x和y的相关系数在-1到0之间 |
D.当n为偶数时,分布在l两侧的样本点的个数一定相同 |
已知等差数列{an}满足a2=3,=51(n>3) , = 100,则n的值为
A.8 | B.9 | C.10 | D.11 |
在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长的概率为
A. | B. | C. | D. |
阅读程序框图(如图),如果输出的函数值在区间[,1]上,则输入的实数x的取值范围是
A. | B.[-2,0] |
C.[0,2] | D. |
已知三棱锥A-BCD内接于球O,AB=AD=AC=BD=,∠BCD=60°,则球O的表面积为
A. | B. | C. | D. |
F1,F2分别是双曲线的左、右焦点,过F1的直线l与双曲线的左、右两支分别交于A、B两点.若ΔABF2是等边三角形,则该双曲线的离心率为
A. 2 B. C. D.
设方程=|lg(-x)|的两个根分别为x1,x2,则
A.x1 x2<0 | B.x1 x2=1 | C.x1x2 >1 | D.0<x1 x2<1 |
在样本频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其它10个长方形的面积和的,且样本容易为160,则中间一组的频数为___
在矩形ABCD中,AB=2,BC=1,E为BC的中点,若F为该矩形内(含边界)任意一点,则:的最大值为______:
(本小题满分12分)
已知函数
(I)求函数f(x)的最小正周期;
(II)求函数f(x)的最小值.及f(x)取最小值时x的集合。
(本小题满分12分)
某市的教育研究机构对全市高三学生进行综合素质测试,随机抽取了部分学生的成绩,得到如图所示的成绩频率分布直方图.
(I )估计全市学生综合素质成绩的平均值;
(II)若综合素质成绩排名前5名中,其中1人为某校的学生会主席,从这5人中推荐3人参加自主招生考试,试求这3人中含该学生会主席的概率。
(本小题满分12分)
如图,已知三棱柱ABC-A1B1C1
(I)若M、N分别是AB,A1C的中点,求证:MN//平面BCC1B1
(II)若三棱柱ABC-A1B1C1的各棱长均为2,∠B1BA=∠B1BC=60°,P为线段B1B上的动点,当PA+PC最小时,求证:B1B⊥平面APC。
(本小题满分12分)
已知直线l1:4x:-3y+6=0和直线l2:x=-,.若拋物线C:y2=2px上的点到直线l1和直线l2的距离之和的最小值为2.
(I )求抛物线C的方程;
(II)直线l过抛物线C的焦点F与抛物线交于A,B两点,且AA1,BB1都垂直于直线l2,垂足为A1,B1,直线l2与y轴的交点为Q,求证:为定值。
(本小题满分12分)
已知函數f(x)=ln+mx2(m∈R)
(I)求函数f(x)的单调区间;
(II)若A,B是函数f(x)图象上不同的两点,且直线AB的斜率恒大于1,求实数m的取值范围。
(本小题满分10分)选修4-1几何证明选讲
如图,AB是O的直径,BE为圆0的切线,点c为o 上不同于A、B的一点,AD为的平分线,且分别与BC 交于H,与O交于D,与BE交于E,连结BD、CD.
(I )求证:BD平分
(II)求证:AH•BH=AE•HC
(本小题满分10分)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,以坐标原点O为极点x轴的正半轴为极轴建立极坐标系, 曲线C1的极坐标方程为:
(I)求曲线C1的普通方程;
(II)曲线C2的方程为,设P、Q分别为曲线C1与曲线C2上的任意一点,求|PQ|的最小值.