[安徽]2013届安徽省马鞍山市高三第一次教学质量检测文科数学试卷
“”是“函数的最小正周期为”的( )
A.充分非必要条件 | B.必要非充分条件 |
C.充分必要条件 | D.既不充分也不必要条件 |
已知正方形ABCD的三个顶点A(1,1),B(1,3),C(3,3),点P(x,y)在正方形ABCD的内部,则的取值范围是
A. | B. | C. | D. |
下列命题正确的是
A.若两条直线与同一个平面所成的角相等,则这两条直线平行 |
B.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面 |
C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行 |
D.若两个平面都垂直于第三个平面,则这两个平面平行 |
执行如图所示的程序框图,若输出的值为15,则输入的值可能为
A.2 | B.4 | C.6 | D.8 |
已知函数的导函数的图象如图所示,则关于函数,下列说法正确的是
A.在处取得极大值 |
B.在区间上是增函数 |
C.在处取得极大值 |
D.在区间上是减函数 |
过双曲线的右焦点F作与轴垂直的直线,分别与双曲线、双曲线的渐近线交于点(均在第一象限内),若,则双曲线的离心率为
A. | B. | C. | D. |
某产品前年的总产量与之间的关系如图所示,已知前年的平均产量最高,则等于
A.6 | B.7 |
C.8 | D.9 |
已知总体的各个个体的值由小到大依次为3,7, ,,12,20,且总体的中位数为12,若要使该总体的标准差最小,则 , .
是定义在上的奇函数,且当,设,给出三个条件:①②,③.其中可以推出的条件共有 个.
(本小题满分12分)
等差数列中,前项和为,且.
(Ⅰ)求通项公式;
(Ⅱ)设,求数列前项的和.
(本小题满分12分)设.
(Ⅰ)求最大值及相应值;
(Ⅱ)锐角中,满足.求取值范围.
(本小题满分12分)
如图,四棱锥中,底面是菱形,,侧面底面,分别为中点.
(Ⅰ)求证:∥平面;
(Ⅱ)求证:平面平面.
(本小题满分13分)
某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答下列问题:
(Ⅰ)求全班人数及分数在之间的频数;
(Ⅱ)不看茎叶图中的具体分数,仅根据频率分布直方图估计该班的平均分数;
(Ⅲ)若要从分数在之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在之间的概率.
(本小题满分13分).
(Ⅰ)求的单调区间;
(Ⅱ)若的图像不存在与平行或重合的切线,求实数的取值范围.