河南省驻马店高中2010届高三一模(数学文)
设与是定义在同一区间[a,b]上的两个函数,若对任意x∈[a,b],都有成立,则称和在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若与在[a,b]上是“密切函数”,则其“密切区间”可以是( )
A.[1,4] | B.[2,4] | C.[3,4] | D.[2,3] |
已知定义在R上的函数满足条件,且函数是奇函数,给出以下四个命题:
①函数是周期函数;
②函数的图象关于点对称;
③函数是偶函数;
④函数在R上是单调函数。
在上述四个命题中,真命题的序号是 (写出所有的真命题的序号)。
)已知向量=(sin(+x),cosx),=(sinx,cosx), f(x)= ·.
⑴求f(x)的最小正周期和单调增区间;
⑵如果三角形ABC中,满足f(A)=,求角A的值.
某隧道长2150米,通过隧道的车速不能超过20米/秒.一个由55辆车身都为10米的同一车型组成的运输车队匀速通过该隧道.设车队的速度为x米/秒,根据安全和车流的需要,相邻两车均保持米的距离,其中a为常数且,自第一辆车车头进入隧道至第55辆车车尾离开隧道所用时间为y(秒) .
(1)将y表示为x的函数;
(2)求车队通过隧道所用时间取最小值时车队的速度.
设函数,且(为自然对数的底数).
(Ⅰ)求实数与的关系;
(Ⅱ)若函数在其定义域内为单调函数,求实数的取值范围;
(Ⅲ)设,若存在,使得成立,求实数的取值范围.