2013年初中数学单元提优测试卷-因式分解的应用
宁海中学高一段组织了围棋比赛,共有10名选手进入了决赛,决赛阶段实行单循环赛(即每两名参赛选手都要赛一局,且每局比赛都决出胜负),若一号选手胜a1局,输b1局;二号选手胜a2局,输b2局,…,十号选手胜a10局,输b10局.试比较a12+a22+…+a102与b12+b22+…+b102的大小,并叙述理由.
已知四个实数a,b,c,d,且a≠b,c≠d.若四个关系式:a2+ac=4,b2+bc=4,c2+ac=8,d2+ad=8同时成立,试求a,c的值.
已知:a+b=4,ab=1.
求:(1)(a﹣b)2的值; (2)a5b﹣2a4b4+ab5的值.
已知;a、b、c是△ABC的三边的长,且满足a3+ab2+bc2=ac2+a2b+b3,试判断△ABC的形状.
已知a,b,c是△ABC的三条边长,且满足b2+ab=c2+ac,试判断△ABC的形状并说明理由.
在△ABC中,已知三边a、b、c满足a4+2a2b2+b4﹣2a3b﹣2ab3=0.试判断△ABC的形状.
如图,大长方形是由四个小长方形拼成的,请根据此图填空:x2+(p+q)x+pq=x2+px+qx+pq=( )( ).
说理验证
事实上,我们也可以用如下方法进行变形:
x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+()= =( )( ).
于是,我们可以利用上面的方法进行多项式的因式分解.
尝试运用
例题 把x2+3x+2分解因式.
解:x2+3x+2=x2+(2+1)x+2×1=(x+2)(x+1).
请利用上述方法将下列多项式分解因式:
(1)x2﹣7x+12; (2)(y2+y)2+7(y2+y)﹣18.
已知在△ABC中,三边长a,b,c满足等式a2+2b2+c2﹣2ab﹣2bc=0,试判断该三角形是什么三角形,并加以证明.