北京市海淀区高三一模理科试题
在平面直角坐标系中,点P的直角坐标为。若以圆点O为极点,轴半轴为极轴建立坐标系,则点P的极坐标可以是
A. | B. | C. | D. |
已知数列具有性质P:对任意,
,与两数中至少有一个是该数列中的一项,现给出以下四个命题:
①数列0,1,3具有性质P;
②数列0,2,4,6具有性质P;
③若数列A具有性质P,则;
④若数列具有性质P,则
其中真命题有
A.4个 | B.3个 | C.2个 | D.1个 |
某校为了解高三同学寒假期间学习情况,抽查了100名学生,统计他们每天平均学习时间,绘成频率分布直方图(如图)。则这100名同学中学习时间6~8小时的人数为 。
给定下列四个命题:
①“”是“”的充分不必要条件;
②若“”为真,则“”为真;
③若,则;
④若集合,则。
其中真命题的是 (填上所有正确命题的序号)
已知有公共焦点的椭圆与双曲线中心在原点,焦点在轴上,左右焦点分别为,且它们在第一象限的交点为,是以为底边的等要三角形,若,双曲线的离心率的取值范围为,则该椭圆的离心率的取值范围为 。
(本小题满分13分)
某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.
(I)若某位顾客消费128元,求返券金额不低于30元的概率;
(II)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X(元).
求随机变量X的分布列和数学期望。
(本小题满分14分)
如图,在三棱柱中,侧面底面ABC,,,且为AC中点。
(I) 证明:平面ABC;
(II) 求直线与平面所成角的正弦值;
(III) 在上是否存在一点E,使得平面,若不存在,说明理由;若存在,确定点E的位置。
(本小题满分13分)
已知函数,其中为常数,且。
(I) 当时,求在( )上的值域;
(II) 若对任意恒成立,求实数的取值范围。
(本小题满分13分)
已知椭圆C的对称中心为原点O,焦点在轴上,左右焦点分别为,且=2点在该椭圆上。
(I) 求椭圆C的方程;
(II) 过的直线与椭圆C相交于A,B两点,若的面积为,求以为圆心且与直线相切的圆的方程。