广东省肇庆市高三第二次模拟考试数学(理)试题
设集合那么“”是“”的 ( )
A.充分而不必要条件 | B.必要而不充分条件 |
C.充要条件 | D.既不充分也不必要条件 |
在区间[0,]上随机取一个数x,则事件“”发生的概率为( )
A. | B. | C. | D. |
从6名学生中选4人分别从事A、B、C、D四项不同的工作,若甲、乙两人不能从事A工作,则不同的选派方案共有 ( )
A.280 B.240 C.180 D.96
我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,…,9填入3×3的方格内,使三行、三列、二对角线的三个数之和都等于15,如图1所示,一般地,将连续的正整数1,2,3,…n2填入n×n个方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n阶幻方,记n阶幻方的对角线上数的和为N,如图1的幻方记为N3=15,那么N12的值为( )
A.869 | B.870 | C.871 | D.875 |
学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n的样本,其频率分布直方图如图2所示,其中支出在元的同学有30人,则n的值为 。
如图4,在三棱锥P—ABC中,PA⊥平面ABC、△ABC为正三角形,且PA=AB=2,则三棱锥P—ABC的侧视图面积为 。
(几何证明选讲选做题)如图5,AB为⊙O的直径,弦AC、BD交于点P,若AB=3,CD=1,则= 。
(本小题满分12分)
已知A、B、C是△ABC的三个内角,向量
且
(1)求角A;
(2)若的值。
(本小题满分12分)
如图6,已知正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1。
(1)求证:平面AB1D⊥平面B1BCC1;
(2)求证:A1C//平面AB1D;
(3)求二面角B—AB1—D的正切值。
(本小题满分14分)
在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x、y,设O为坐标原点,点P的坐标为记.
(1)求随机变量 的最大值,并求事件“取得最大值”的概率;
(2)求随机变量的分布列和数学期望.
(本小题满分14分)
已知焦点在x轴上,离心率为的椭圆的一个顶点是抛物线的焦点,过椭圆右焦点F的直线l交椭圆于A、B两点,交y轴于点M,且
(1)求椭圆的方程;
(2)证明:为定值。
(本小题满分14分)
已知函数
(1)若函数的取值范围;
(2)若对任意的时恒成立,求实数b的取值范围。