广东省茂名市第二次高考模拟考试数学理科
某银行开发出一套网银验证程序,验证规则如下:(1)有两组数字,这两组数字存在一种对应关系;第一组数字对应于第二组数字;(2)进行验证时程序在电脑屏幕上依次显示产第二组数字,由用主要计算出第一组数字后依次输入电脑,只有准确输入方能进入,其流程图如图,试问用户应输入 ( )
A.3,4,5 | B.4,2,6 |
C.2,6,4 | D.3,5,7 |
若圆O1方程为,圆O2方程为
,则方程
表示的轨迹是( )
A.线段O1O52的中垂线 |
B.过两圆内公切线交点且垂直线段O1O2的直线 |
C.两圆公共弦所在的直线 |
D.一条直线且该直线上的点到两圆的切线长相等 |
(极坐标与参数方程选做题)已知曲线C的极坐标方程是,以极点为平在直角坐标系的原点,极轴为的正半轴,建立平面直角坐标系,直线的参数方程是
为参数),则直线与曲线C相交所得的弦的弦长为 。
(本小题满分12分)第16届亚运会将于2010年11月12日至27日在中国广州进行,为了搞好接待工作,组委会招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余不喜爱。
(1)根据以上数据完成以下2×2列联表:
|
喜爱运动 |
不喜爱运动 |
总计 |
男 |
10 |
|
16 |
女 |
6 |
|
14 |
总计 |
|
|
30 |
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关?
(3)从女志原者中抽取2人参加接待工作,若其中喜爱运动的人数为,求的分布列和均值。
参考公式:,其中
参考数据:
0.40 |
0.25 |
0.10 |
0.010 |
|
0.708 |
1.323 |
2.706 |
6.635 |
(本小题满分14分)已知四棱锥P—ABCD的三视图如右图所示,
其中正(主)视图与侧(左)视为直角三角形,俯视图为正方形。
(1)求四棱锥P—ABCD的体积;
(2)若E是侧棱上的动点。问:不论点E在PA的
任何位置上,是否都有?
请证明你的结论?
(3)求二面角D—PA—B的余弦值。
(本小题满分14分)如图所示,椭圆的离心率为,且A(0,1)是椭圆C的顶点。
(1)求椭圆C的方程;
(2)过点A作斜率为1的直线,在直线上求一点M,使得以椭圆C的焦点为焦点,且过点M的双曲线E的实轴最长,并求此双曲线E的方程。