[山东]2013届山东省潍坊市九年级复习模拟数学试卷
王英同学从A地沿北偏西60º方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地( ).
A.m | B.100m | C.150m | D.m |
已知关于x的一元二次方程有两个不相等的实数根,则m的取值范围是( ).
A. | B. | C.且 | D.且 |
在边长为2的小正方形组成的网格中,有如图所示的A,B两点,在格点上任意放置点C,恰好能使得△ABC的面积为2的概率为( ).
A. | B. | C. | D. |
点P(a,b)是直线y=-x-5与双曲线的一个交点,则以a、b两数为根的一元二次方程是( ).
A.x2-5x+6=0 | B.x2+5x+6=0 | C.x2-5x-6="0" | D.x2+5x-6=0 |
如图,AB的中垂线为CP交AB于点P,且AC =2CP.甲、乙两人想在AB上取D、E两点,使得AD=DC=CE=EB,其作法如下:甲作ÐACP、ÐBCP的角平分线,分别交AB于D、E两点,则D、E即为所求;乙作AC、BC的中垂线,分别交AB于D、E两点,则D、E即为所求.对于甲、乙两人的作法,下列正确的是( ).
A. 两人都正确 B. 两人都错误
C.甲正确,乙错误 D. 甲错误,乙正确
已知四边形ABCD,对角线AC与BD互相垂直. 顺次连接其四条边的中点,得到新四边形的形状一定是( ).
A.梯形 | B.矩形 | C.菱形 | D.正方形 |
二次函数的图象如图所示,则一次函数的图象不经过( ).
A.第一象限 | B.第二象限 | C.第三象限 | D.第四象限 |
如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以点C为圆心,以2cm的长为半径作圆,则⊙C与AB的位置关系是( ).
A.相切 | B.相离 | C.相交 | D.相切或相交 |
如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t秒(0≤t≤4),则能大致反映S与t的函数关系的图象是( ).
如图,△中,,.是的中点,⊙与AC,BC分别相切于点与点.与的一个交点为F,连结并延长交的延长线于点.若=,则__.
如图,正方形AFCE中,D是边CE上一点,B是CF延长线上一点,且AB=AD,若四边形ABCD的面积是24cm2. 则AC长是________cm.
已知二次函数(为常数),当取不同的值时,其图象构成一个“抛物线系”.下图分别是当,,,时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是__________________.
式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+ +100”表示为,这里的符号“”是求和的符号,如“1+3+5+7+ +99”即从1开始的100以内的连续奇数的和,可表示为.通过对以上材料的阅读,请计算:_______(填写最后的计算结果).
下列图表是某校今年参加中考体育的男生1000米跑、女生800米跑的成绩中分别抽取的10个数据.
考 生 编 号 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
男 生 成 绩 |
3′05〞 |
3′11〞 |
3′53〞 |
3′10〞 |
3′55〞 |
3′30〞 |
3′25〞 |
3′19〞 |
3′27〞 |
3′55〞 |
(1)求出这10名女生成绩的中位数、众数和极差;
(2)按规定,男生1000米跑成绩不超过3′35〞就可以得满分.该校学生有490人,男生比女生少70人. 请你根据上面抽样的结果,估算该校考生中有多少名男生该项考试得满分?
在Rt△POQ中,OP=OQ=4,M是PQ的中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B.
(1)求证:MA=MB;
(2)连接AB,探究:在旋转三角尺的过程中,△AOB的周长是否存在最小值?若存在,求出最小值;若不存在,请说明理由.
学校240名师生集体外出活动,准备租用45座大客车或30座小客车,共租用6辆. 据调查:租用1辆大车和2辆小车共需租车费1000元;租用2辆大车1辆小车共需租车费1100元.
(1)求大、小车每辆的租车费各是多少元?
(2)若总租车费用不超过2300元,求最省钱的租车方案.
如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求∠P的度数;
(3)点M是弧AB的中点,CM交AB于点N,AB=4,求线段BM、CM及弧BC所围成的图形面积.
某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元).
(1)当x=1000时,y= 元/件,w内 = 元;
(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);
(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值.