北京市西城区高二下学期期末数学试题(理科)
在篮球比赛中,罚球命中1次得1分,不中得0分,如果运动员甲罚球命中的概率是0.8,记运动员甲罚球1次的得分为,则等于( )
A.0.2 | B.0.4 | C.0.8 | D.1 |
甲、乙两人相互独立地解同一道数学题.已知甲做对此题的概率是0.8,乙做对此题的概率是0.7,那么甲、乙两人中恰有一人做对此题的概率是( )
A.0.56 | B.0.38 | C.0.24 | D.0.14 |
从7名同学(其中4男3女)中选出4名参加环保知识竞赛,若这4人中必须既有男生又有女生,则不同选法的种数为( )
A.34 | B.31 | C.28 | D.25 |
某人的一张银行卡的密码共有6位数字,每位数字都可以从0~9中任选一个,他在银行的自动提款机上取钱时,忘记了密码的最后一位数字,求:
(I)任意按最后一位数字,不超过2次就按对的概率.
(II)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.
(本小题满分12分)
一个口袋巾装有标号为1,2,3的6个小球,其中标号1的小球有1个,标号2的小球有2个,标号3的小球有3个,现从口袋中随机摸出2个小球.
(I)求摸出2个小球标号之和为3的概率;
(II)求摸出2个小球标号之和为偶数的概率;
(III)用表示摸出2个小球的标号之和,写出的分布列,并求的数学期望.
(本小题满分12分)
甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在8,9,10环,且每次射击击中与否互不影响.甲、乙射击命中环数的概率如下表:
|
8环 |
9环 |
10环 |
甲 |
0.2 |
0.45 |
0.35 |
乙 |
0.25 |
0.4 |
0.35 |
(I)若甲、乙两运动员各射击1次,求甲运动员击中8环且乙运动员击中9环的概率;
(II)若甲、乙两运动员各自射击2次,求这4次射击中恰有3次击中9环以上(含9环)的概率.