[吉林]2014届吉林省白山市高三摸底考试文科数学试卷
如果复数(2-bi)i(其中b∈R)的实部与虚部互为相反数,则b=( )
A.2 | B.-2 | C.-1 | D.1 |
设集合A={x|-3<x<1},B={x|log2|x|<1}则A∩B等( )
A.(-3,0)∪(0,1) | B.(-1,0)∪(0,1) |
C.(-2,1) | D.(-2,0)∪(0,1) |
若数列的前n项和为,则下列命题:
(1)若数列是递增数列,则数列也是递增数列;
(2)数列是递增数列的充要条件是数列的各项均为正数;
(3)若是等差数列(公差),则的充要条件是
(4)若是等比数列,则的充要条件是
其中,正确命题的个数是( )
A.0个 | B.1个 | C.2个 | D.3个 |
已知:命题:“是的充分必要条件”;
命题:“”.则下列命题正确的是( )
A.命题“∧”是真命题 | B.命题“(┐)∧”是真命题 |
C.命题“∧(┐)”是真命题 | D.命题“(┐)∧(┐)”是真命题 |
现有12件商品摆放在货架上,摆成上层4件下层8件,现要从下层8件中取2件调整到上层,若其他商品的相对顺序不变,则不同调整方法的种数是( )
A.420 | B.560 | C.840 | D.20160 |
已知双曲线的两条渐近线与以椭圆的左焦点为圆心、半径为的圆相切,则双曲线的离心率为( )
A. | B. | C. | D. |
已知定义在R上的偶函数f(x)满足:∀x∈R恒有f(x+2)=f(x)-f(1).且当x∈[2,3]时,f(x)=-2(x-3)2.若函数y=f(x)-loga(x+1)在(0,+∞)上至少有三个零点,则实数a的取值范围为( )
A.(0,) | B.(0,) | C.(1,) | D.(1,) |
已知,点在函数的图象上,其中
(1)证明:数列是等比数列,并求数列的通项公式;
(2)记,求数列的前项和.
一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.
(Ⅰ)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;
(Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.
如图,在四棱锥中,底面为菱形,,为的中点。
(1)若,求证:平面;
(2)点在线段上,,试确定的值,使;
已知椭圆C: (a>b>0)的两个焦点和短轴的两个端点都在圆上.
(I)求椭圆C的方程;
(II)若斜率为k的直线过点M(2,0),且与椭圆C相交于A, B两点.试探讨k为何值时,三角形OAB为直角三角形.
已知,点B是轴上的动点,过B作AB的垂线交轴于点Q,若,.
(1)求点P的轨迹方程;
(2)是否存在定直线,以PM为直径的圆与直线的相交弦长为定值,若存在,求出定直线方程;若不存在,请说明理由。
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的轴的正半轴重合.直线的参数方程是(为参数),曲线C的极坐标方程为.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)设直线与曲线C相交于M,N两点,求M,N两点间的距离.