2011年内蒙古呼和浩特市中考数学试卷
在一个不透明的口袋中装有若干个质地相同而颜色可能不全
相同的球,如果口袋中只装有3个黄球,且摸出黄球的概率为,那么袋中共有球( )
A.6个 | B.7个 | C.9个 | D.12个 |
双曲线与在第一象限内的图象如图所示,作一条平行于y轴
的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为( )
A.1 B.2
C.3 D.4
某市为治理污水,需要辅设一段全长为300 m的污水排放管道,铺设120 m后,
为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共
用30天完成这一任务,如果设原计划每天铺设xm管道,那么根据题煮,可得方程( )
A. | B. | C. | D. |
已知下列命题:①若a>0,b>0,则a+b>0;②若a2≠b2,则a≠b:③角平分线
上的点到这个角的两边距离相等;④平行四边形的对角线互相平分;⑤直角三角形斜边上的
中线等于斜边的一半.其中原命题与逆命题均为真命题的是( )
A.①③④ | B.①②④ | C.③④⑤ | D.②③⑤ |
如图,已知□ABCD中,AB=4,AD=2,E是AB边上的一动点(动点E与点
A不重合,可与点B重合),设AE=x,DE的延长线交CB的延长线于点F,设CF=y,则
下列图象能正确反映y与x的函数关系的是( )
在一个不透明的盒子里,装有三个分别标有数字1,2,4的小球,它们的形状、
大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放同盒子摇匀
后,再由小华随机取山一个小球,记下数字为y.
(1)写出(x,y)的所有可能出现的结果;
(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数的图象上的概率.
已知梯形ABCD中,AD∥BC,∠A=90°,点E为
AB上一点,且CE⊥DE,CB、DE的延长线交于点F.
(1)求证:;
(2)已知EF=5,FB=3,求BC的长.
某市今年1月份起调整居民用水价格,每立方米水费上涨25%,小明家去年12
月份的水费是18元,而今年5月份的水费是36元,已知小明家今年5月份的用水量比12
月份多6 m3,求该市今年居民用水的价格.
如图,函数 (x>0,k为常数)的图象经过
A(1,4),B(m,n),其中m>1,过点B作y轴的垂线,垂
足为D,连结AD.
(1)求k的值;
(2)若△ABD的面积为4,求点B的坐标;并回答当x取何
值时,直线AB的图象在反比例函数图象的上方.
用四舍五入法按要求对0.05049分别取近似值,其中错误的是( )
A.0.1(精确到0.1) | B.0.05(精确到百分位) |
C.0.05(精确到千分位) | D.0.050(精确到0.001) |
经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为( )
A. | B. |
C. | D. |
如果等腰三角形两边长是6cm和3cm,那么它的周长是( )
A.9cm | B.12cm |
C.15cm或12cm | D.15cm |
已知一元二次方程x2+bx﹣3=0的一根为﹣3,在二次函数y=x2+bx﹣3的图象上有三点、、,y1、y2、y3的大小关系是( )
A.y1<y2<y3 | B.y2<y1<y3 |
C.y3<y1<y2 | D.y1<y3<y2 |
如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为( )
A. | B. |
C. | D. |
下列判断正确的有( )
①顺次连接对角线互相垂直且相等的四边形的各边中点一定构成正方形;
②中心投影的投影线彼此平行;
③在周长为定值π的扇形中,当半径为时扇形的面积最大;
④相等的角是对顶角的逆命题是真命题.
A.4个 | B.3个 |
C.2个 | D.1个 |
一个样本为1、3、2、2、a,b,c.已知这个样本的众数为3,平均数为2,那么这个样本的方差为( )
在半径为2的圆中有一个内接正方形,现随机地往圆内投一粒米,落在正方形内的概率为( ) (注:π取3)
如图所示,在梯形ABCD中,AD∥BC,CE是∠BCD的平分线,且CE⊥AB,E为垂足,BE=2AE,若四边形AECD的面积为1,则梯形ABCD的面积为( )
在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B两个凉亭之间的距离.现测得AC=30m,BC=70m,∠CAB=120°,请计算A,B两个凉亭之间的距离.
如图所示,四边形ABCD是正方形,点E是边BC的中点且∠AEF=90°,EF交正方形外角平分线CF于点F,取边AB的中点G,连接EG.
(1)求证:EG=CF;
(2)将△ECF绕点E逆时针旋转90°,请在图中直接画出旋转后的图形,并指出旋转后CF与EG的位置关系.
在同一直角坐标系中反比例函数的图象与一次函数y=kx+b的图象相交,且其中一个交点A的坐标为(﹣2,3),若一次函数的图象又与x轴相交于点B,且△AOB的面积为6(点O为坐标原点).求一次函数与反比例函数的解析式.
为了解我市3路公共汽车的运营情况,公交部门随机统计了某天3路公共汽车每个运行班次的载客量,得到如下频数分布直方图.如果以各组的组中值代表各组实际数据,请分析统计数据完成下列问题.
(1)找出这天载客量的中位数,说明这个中位数的意义;
(2)估计3路公共汽车平均每班的载客量大约是多少?
(3)计算这天载客量在平均载客量以上班次占总班次的百分数.
(注:一个小组的组中值是指这个小组的两个端点数的平均数)
生活中,在分析研究比赛成绩时经常要考虑不等关系.例如:一射击运动员在一次比赛中将进行10次射击,已知前7次射击共中61环,如果他要打破88环(每次射击以1到10的整数环计数)的记录,问第8次射击不能少于多少环?
我们可以按以下思路分析:
首先根据最后二次射击的总成绩可能出现的情况,来确定要打破88环的记录,第8次射击需要得到的成绩,并完成下表:
最后二次射击总成绩 |
第8次射击需得成绩 |
20环 |
|
19环 |
|
18环 |
|
根据以上分析可得如下解答:
解:设第8次射击的成绩为x环,则可列出一个关于x的不等式:( )解得( )
所以第8次设计不能少于 ( )环
如图所示,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,.
(1)求证:直线PB是⊙O的切线;
(2)求cos∠BCA的值.
已知抛物线y1=x2+4x+1的图象向上平移m个单位(m>0)得到的新抛物线过点(1,8).
(1)求m的值,并将平移后的抛物线解析式写成y2=a(x﹣h)2+k的形式;
(2)将平移后的抛物线在x轴下方的部分沿x轴翻折到x轴上方,与平移后的抛物线没有变化的部分构成一个新的图象.请写出这个图象对应的函数y的解析式,并在所给的平面直角坐标系中直接画出简图,同时写出该函数在﹣3<x≤时对应的函数值y的取值范围;
(3)设一次函数y3=nx+3(n≠0),问是否存在正整数n使得(2)中函数的函数值y=y3时,对应的x的值为﹣1<x<0,若存在,求出n的值;若不存在,说明理由.