2011年初中毕业升学考试(四川达州卷)数学
如图,已知Rt△ABC中,∠C=90°,BC="3," AC=4,
则sinA的值为( ).
A. | B. |
C. | D. |
下面调查中,适合采用全面调查的事件是( ).
A.对全国中学生心理健康现状的调查. |
B.对我市食品合格情况的调查. |
C.对桂林电视台《桂林板路》收视率的调查. |
D.对你所在的班级同学的身高情况的调查. |
若点 P(,-2)在第四象限,则的取值范围是( ).
A.-2<<0 | B.0<<2 | C.>2 | D.<0 |
在平面直角坐标系中,将抛物线绕着它与轴的交点旋转180°,
所得抛物线的解析式是( ).
A. | B. |
C. | D. |
如图,将边长为的正六边形A1 A2 A3 A4 A5 A6在直线上由图1的位置按顺时针
方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的
长为( ).
A. | B. | C. | D. |
我市在临桂新区正在建设的广西桂林图书馆、桂林博物馆、桂林大剧院及文化广场,建成后总面积达163500平方米,将成为我市“文化立市”和文化产业大发展的新标志,把163500平方米用科学记数法可表示为 平方米.
如图,等腰梯形ABCD中,AB∥DC,BE∥AD, 梯形ABCD
的周长为26,DE=4,则△BEC的周长为 .
双曲线、在第一象限的图像如图,,过上的任意一点,作轴
的平行线交于,交轴于,若,则的解析式是 .
本题满分8分)“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:
(1)这次抽查的家长总人数为 ;
(2)请补全条形统计图和扇形统计图;
(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率
是 .
某市为争创全国文明卫生城,2008年市政府对市区绿化工程投
入的资金是2000万元,2010年投入的资金是2420万元,且从2008年到2010年,两年间
每年投入资金的年平均增长率相同.
(1)求该市对市区绿化工程投入资金的年平均增长率;
(2)若投入资金的年平均增长率不变,那么该市在2012年需投入多少万元?
某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院
慰问孤寡老人,如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一
个老人不足5盒,但至少分得一盒.
(1)设敬老院有名老人,则这批牛奶共有多少盒?(用含的代数式表示).
(2)该敬老院至少有多少名老人?最多有多少名老人?
如图,在锐角△ABC中,AC是最短边;以AC中点O为圆心,AC长为半径作⊙O,交BC于E,过O作OD∥BC交⊙O于D,连结AE、AD、DC.
(1)求证:D是 弧AE 的中点;
(2)求证:∠DAO =∠B+∠BAD;
(3)若 ,且AC=4,求CF的长.
已知样本数据1,2,4,3,5,下列说法不正确的是( )
A.平均数是3 | B.中位数是4 |
C.极差是4 | D.方差是2 |
如图2,在□ABCD中,E是BC的中点,且
∠AEC=∠DCE,则下列结论不正确的是( )
A.S△AFD=2S△EFB | B.BF=DF |
C.四边形AECD是等腰梯形 | D.∠AEB=∠ADC |
如图3,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB="10,CD=8,"
那么线段OE的长为( )
A.5 | B.4 |
C.3 | D.2 |
如图4,国际奥委会会旗上的图案是由五个圆环组成,在这个图案中反映出的两圆位置关系有( )
A.内切、相交 | B.外离、相交 |
C.外切、外离 | D.外离、内切 |
、据报道,达州市2010年全年GDP(国内生产总值)约为819.2亿元,请把这个数用科学记数法表示为 元(保留两个有效数字).
如图5,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD S△BOC.(填“”、“= ”或“”)
我市某中学七年级甲、乙、丙三个班中,每班的学生人数都为60名,某次数学考试的成绩统计如下:(每组分数含最小值,不含最大值)
丙班数学成绩频数统计表
分数 |
50~60 |
60~70 |
70~80 |
80~90 |
90~100 |
人数 |
2 |
9 |
18 |
17 |
14 |
根据以上图、表提供的信息,则80~90分这一组人数最多的班是 .
如图6,在等腰直角三角形ABC中,∠C=90°,点D为AB的中点,已知扇形EAD和扇形FBD的圆心分别为点A、点B,且AC=2,则图中阴影部分的面积为_________(结果不去近似值).
用同样大小的小圆按下图所示的方式摆图形,第1个图形需要1个小圆,第2个图形需3个小圆,第3个图形需要6个小圆,第4个图形需要10个小圆,按照这样的规律摆下去,则第个图形需要小圆 个(用含的代数式表示).
我市某建筑工地,欲拆除该工地的一危房AB(如图),准备对该危房实施定向爆破.已知距危房AB水平距离60米(BD=60米)处有一居民住宅楼,该居民住宅楼CD高15米,在该该住宅楼顶C处测得此危房屋顶A的仰角为30°,请你通过计算说明在实施定向爆破危房AB时,该居民住宅楼有无危险?(在地面上以点B为圆心,以AB长为半径的圆形区域为危险区域,参考数据:,)
给出下列命题:
命题1:直线与双曲线有一个交点是(1,1);
命题2:直线与双曲线有一个交点是(,4);
命题3:直线与双曲线有一个交点是(,9);
命题4:直线与双曲线有一个交点是(,16);
……………………………………………………
(1)请你阅读、观察上面命题,猜想出命题(为正整数);
(2)请验证你猜想的命题是真命题.
在△ABC和△DEF中,∠C=∠F=90°.有如下五张背面完全相同的纸牌①、②、③、④、⑤,其正面分别写有五个不同的等式,小民将这五张纸牌背面朝上洗匀后先随机摸出一张(不放回),再随机摸出一张.请结合以上条件,解答下列问题.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用①、②、③、④、⑤表示);
(2)用两次摸牌的结果和∠C=∠F=90°作为条件,求能满足△ABC和△DEF全等的概率.
如图,△ABC的边BC在直线上,AC⊥BC,且AC=BC,△DEF的边FE也在直线上,边DF与边AC重合,且DF=EF.
(1)在图(1)中,请你通过观察、思考,猜想并写出AB与AE所满足的数量关系和位置关系;(不要求证明)
(2)将△DEF沿直线向左平移到图(2)的位置时,DE交AC于点G,连结AE,BG.猜想△BCG与△ACE能否通过旋转重合?请证明你的猜想.
如图,在
中,
,
,
,点
从点
以每秒1个单位长度的速度向点
运动(点
不与
重合),过点
作DE∥BC交
于点
.以
为直径作⊙O,并在
内作内接矩形
,设点
的运动时间为
秒.
(1)用含
的代数式表示
的面积
;
(2)当
为何值时,
与直线
相切?
我市化工园区一化工厂,组织20辆汽车装运A、B、C三种化学物资共200吨到某地.按计划20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.请结合表中提供的信息,解答下列问题:
(1)设装运A种物资的车辆数为,装运B种物资的车辆数为.求与的函数关系式;
(2)如果装运A种物资的车辆数不少于5辆,装运B种物资的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;
(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?请求出最少总运费.
物资种类 |
A |
B |
C |
每辆汽车运载量(吨) |
12 |
10 |
8 |
每吨所需运费(元/吨) |
240 |
320 |
200 |