2011年江苏省南通市中考数学试题
在平面直角坐标系中,正方形ABCD的顶点分别为A(1,1)、B(1,﹣1)、C(﹣1,﹣1)、D(﹣1,1),y轴上有一点P(0,2).作点P关于点A的对称点P1,作P1关于点B的对称点P2,作点P2关于点C的对称点P3,作P3关于点D的对称点P4,作点P4关于点A的对称点P5,作P5关于点B的对称点P6┅,按如此操作下去,则点P2011的坐标为( )
A.(0,2) | B.(2,0) |
C.(0,﹣2) | D.(﹣2,0) |
已知二次函数,当自变量x取m时对应的值大于0,当自变量x分别取m﹣1、m+1时对应的函数值为y1、y2,则y1、y2必须满足( )
A.y1>0、y2>0 | B.y1<0、y2<0 |
C.y1<0、y2>0 | D.y1>0、y2<0 |
某市2007年5月份某一周的日最高气温(单位:℃)分别为:25、28、30、29、31、32、28,这周的日最高气温的平均值是℃,中位数是 ℃.
已知关于x的一次函数y=kx+4k﹣2(k≠0).若其图象经过原点,则k=,若y随着x的增大而减小,则k的取值范围是 .
某中学为了解本校学生对球类运动的爱好情况,采用抽样的方法,从足球、篮球、排球、其它等四个方面调查了若干名学生,并绘制成“折线统计图”与“扇形统计图”.请你根据图中提供的部分信息解答下列问题:
(1)在这次调查活动中,一共调查了 名学生;
(2)“足球”所在扇形的圆心角是 度;
(3)补全折线统计图.
甲、乙、两三个布袋都不透明,甲袋中装有1个红球和1个白球;乙袋中装有一个红球和2个白球;丙袋中装有2个白球.这些球除颜色外都相同.从这3个袋中各随机地取出1个球.
①取出的3个球恰好是2个红球和1个白球的概率是多少?
②取出的3个球全是白球的概率是多少?
已知:如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证:AB=AC.
已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.
如图,在△ABO中,已知点、B(﹣1,﹣1)、C(0,0),正比例函数y=﹣x图象是直线l,直线AC∥x轴交直线l与点C.
(1)C点的坐标为 ;
(2)以点O为旋转中心,将△ABO顺时针旋转角α(90°<α<180°),使得点B落在直线l上的对应点为B′,点A的对应点为A′,得到△A′OB′.
①∠α= ;②画出△A′OB′.
(3)写出所有满足△DOC∽△AOB的点D的坐标.
已知:如图1,图形①满足AD=AB,MD=MB,∠A=72°,∠M=144°.图形②与图形①恰好拼成一个菱形(如图2).记AB的长度为a,BM的长度为b.
(1)图形①中∠B= ,图形②中∠E= ;
(2)小明有两种纸片各若干张,其中一种纸片的形状及大小与图形①相同,这种纸片称为“风筝一号”;另一种纸片的形状及大小与图形②相同,这种纸片称为“飞镖一号”.
①小明仅用“风筝一号”纸片拼成一个边长为b的正十边形,需要这种纸片 张;
②小明若用若干张“风筝一号”纸片和“飞镖一号”纸片拼成一个“大风筝”(如图3),其中∠P=72°,∠Q=144°,且PI=PJ=a+b,IQ=JQ.请你在图3中画出拼接线并保留画图痕迹.(本题中均为无重叠、无缝隙拼接)
某商店以6元/千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售.这批干果销售结束后,店主从销售统计中发出:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第x天的总销量y1(千克)与x的关系为y1=﹣x2+40x;乙级干果从开始销售至销售的第t天的总销量y2(千克)与t的关系为y2=at2+bt,且乙级干果的前三天的销售量的情况见下表:
t |
1 |
2 |
3 |
y2 |
21 |
44 |
69 |
(1)求a、b的值;
(2)若甲级干果与乙级干果分别以8元/千克的6元/千克的零售价出售,则卖完这批干果获得的毛利润是多少元?
(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克?
(说明:毛利润=销售总金额﹣进货总金额.这批干果进货至卖完的过程中的损耗忽略不计)
在平面直角坐标系XOY中,一次函数的图象是直线l1,l1与x轴、y轴分别相交于A、B两点.直线l2过点C(a,0)且与直线l1垂直,其中a>0.点P、Q同时从A点出发,其中点P沿射线AB运动,速度为每秒4个单位;点Q沿射线AO运动,速度为每秒5个单位.
(1)写出A点的坐标和AB的长;
(2)当点P、Q运动了多少秒时,以点Q为圆心,PQ为半径的⊙Q与直线l2、y轴都相切,求此时a的值.
在平面直角坐标系XOY中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一点,反比例函数(k>0)的图象过点E与直线l1相交于点F.
(1)若点E与点P重合,求k的值;
(2)连接OE、OF、EF.若k>2,且△OEF的面积为△PEF的面积的2倍,求E点的坐标;
(3)是否存在点E及y轴上的点M,使得以点M、E、F为顶点的三角形与△PEF全等?若存在,求E点坐标;若不存在,请说明理由.
如果60m表示“向北走60m”,那么“向南走40m”可以表示为【 】
A.-20m | B.-40m | C.20m | D.40m |
下列长度的三条线段,不能组成三角形的是【 】
A.3,8,4 | B.4,9,6 |
C.15,20,8 | D.9,15,8 |
如图,AB∥CD,∠DCE=80°,则∠BEF=【 】
A.120° | B.110° | C.100° | D.80° |
如果60m表示“向北走60m”,那么“向南走40m”可以表示为【 】
A.-20m | B.-40m | C.20m | D.40m |
下列长度的三条线段,不能组成三角形的是【 】
A.3,8,4 | B.4,9,6 |
C.15,20,8 | D.9,15,8 |
若3是关于方程x2-5x+c=0的一个根,则这个方程的另一个根是【 】
A.-2 | B.2 | C.-5 | D.5 |
如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于【 】
A.8 | B.4 | C.10 | D.5 |
甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是【 】
A.甲的速度是4km/h | B.乙的速度是10km/h |
C.乙比甲晚出发1h | D.甲比乙晚到B地3h |
七位女生的体重(单位:kg)分别为36、42、38、42、35、45、40,则这七位女生的体
重的中位数为 kg.
如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE
=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC
= cm.
如图,为了测量河宽AB(假设河的两岸平行),测得∠ACB=30°,
∠ADB=60°,CD=60m,则河宽AB为 m(结果保留根号).
如图,三个半圆依次相外切,它们的圆心都在x轴上,并与直线y=x相切.设三个半圆的半
径依次为r1、r2、r3,则当r1=1时,r3= .
(10分)(1)计算:22+(-1)4+(-2)0-|-3|;
(2)先化简,再求值:(4ab3-8a2b2)÷4ab+(2a+b)(2a-b),其中a=2,b=1.
(9分)某中学学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图.
请根据图中提供的信息,解答下面的问题:
(1)参加调查的学生共有 人,在扇形图中,表示“其他球类”的扇形的圆心角为 度;
(2)将条形图补充完整;
(3)若该校有2000名学生,则估计喜欢“篮球”的学生共有 人.
(8分)在社区全民健身活动中,父子俩参加跳绳比赛.相同时间内父亲跳180个,儿子跳210个.已知儿子每分钟比父亲多跳20个,父亲、儿子每分钟各跳多少个?
(8分)比较正五边形与正六边形,可以发现它们的相同点和不同点.例如:
它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.
它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.
请你再写出它们的两个相同点和不同点:
相同点:
① ;
② .
不同点:
① ;
② .
(9分)光明中学十分重视中学生的用眼卫生,并定期进行视力检测.某次检测设有A、B两处检测点,甲、乙、丙三名学生各自随机选择其中的一处检测视力.
(1)求甲、乙、丙三名学生在同一处检测视力的概率;
(2)求甲、乙、丙三名学生中至少有两人在B处检测视力的概率.
(10分)如图1,O为正方形ABCD的中心,
分别延长OA、OD到点F、E,使OF=2OA,
OE=2OD,连接EF.将△EOF绕点O逆时针
旋转角得到△E1OF1(如图2).
(1)探究AE1与BF1的数量关系,并给予证明;
(2)当=30°时,求证:△AOE1为直角三角形.
(12分)已知A(1,0)、B(0,-1)、C(-1,2)、D(2,-1)、E(4,2)五个点,抛物线y=a(x-1)2+k(a>0)经过其中的三个点.
(1)求证:C、E两点不可能同时在抛物线y=a(x-1)2+k(a>0)上;
(2)点A在抛物线y=a(x-1)2+k(a>0)上吗?为什么?
(3)求a和k的值.
如图,已知直线l经过点A(1,0),与双曲线
(x>0)交于点B(2,1).过点P(p,p-1)(p>1)作x轴的平
行线分别交双曲线 (x>0)和 (x<0)于点M、N.
(1)求m的值和直线l的解析式;
(2)若点P在直线y=2上,求证:△PMB∽△PNA;
(3)是否存在实数p,使得S△AMN=4S△AMP?若存在,请求出所有满足条件的p的值;若
不存在,请说明理由.
已知:在△ABC中,以AC边为直径的⊙O交BC于点D,在劣弧上取一点E使∠EBC = ∠DEC,延长BE依次交AC于G,交⊙O于H.
(1)求证:AC⊥BH
(2)若∠ABC= 45°,⊙O的直径等于10,BD =8,求CE的长.