[四川]2014届四川省泸州市高三第一次教学质量诊断性考试理科数学试卷
已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7},则=( )
A.{5,7} | B.{2,4} |
C.{1,3,5,6,7} | D.{2,4,8} |
将函数的图象向右平移个单位长度后得到函数的图象,若、的图象都经过点,则的值可以是( )
A. | B. | C. | D. |
设数列是首项大于零的等比数列,则“”是“数列是递增数列”的( )
A.充分而不必要条件 |
B.必要而不充分条件 |
C.充分必要条件 |
D.既不充分也不必要条件 |
若曲线在点处的切线与两条坐标轴围成的三角形的面积为18,则 ( )
A.64 | B.32 | C.16 | D.8 |
一支人数是5的倍数且不少于1000人的游行队伍,若按每横排4人编队,最后差3人;若按每横排3人编队,最后差2人;若按每横排2人编队,最后差1人.则这只游行队伍的最少人数是( )
A.1025 | B.1035 | C.1045 | D.1055 |
定义在上的函数满足,若关于x的方程有5个不同实根,则正实数的取值范围是( )
A. | B. | C. | D. |
设是定义在上的奇函数,且当时,,若对任意,不等式恒成立,则实数的取值范围是 .
已知集合,有下列命题:
①若,则;
②若,则;
③若,则可为奇函数;
④若,则对任意不等实数,总有成立.
其中所有正确命题的序号是 .(填上所有正确命题的序号)
在一次数学统考后,某班随机抽取10名同学的成绩进行样本分析,获得成绩数据的茎叶图如下.
(Ⅰ)计算样本的平均成绩及方差;
(Ⅱ)现从80分以上的样本中随机抽出2名学生,求抽出的2名学生的成绩分别在、上的概率.
在△ABC中,角、、的对边分别为、、,设S为△ABC的面积,满足.
(Ⅰ)求角C的大小;
(Ⅱ)若,且,求的值.
设等差数列的前n项和为,且,.
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列前n项和为,且,令.求数列的前n项和.
已知函数,其中,.
(Ⅰ)若的最小值为,试判断函数的零点个数,并说明理由;
(Ⅱ)若函数的极小值大于零,求的取值范围.
设平面向量,,已知函数在上的最大值为6.
(Ⅰ)求实数的值;
(Ⅱ)若,.求的值.