2011年初中毕业升学考试(江苏盐城卷)数学
下列运算正确的是( )
A.3a–2a=" 1" | B.a2·a3=a6 | C.(a–b)2=a2–2ab+b2 | D.(a+b)2=a2+b2 |
如图,直线AB、CD相交于点E,DF∥AB. 若∠D=70°,
则∠CEB等于( )
A.70° | B.80° |
C.90° | D.110° |
如图,矩形纸片ABCD中,已知AD =8,折叠纸片使AB边与对角线AC
重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为( )
A.3 | B.4 |
C.5 | D.6 |
如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线
是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三
角形的面积是y.则下列图象能大致反映y与x的函数关系的是( )
某城市在“五一”期间举行了“让城市更美好”大型书画、摄影展览活动,据统计,星期一至星期日参观的人数分别是:2030、3150、1320、1460、1090、3150、4120,则这组数据的中位数和众数分别是 .
如图,边长为2的正方形ABCD的中心在直角坐标系的原点O,
AD∥x轴,以O为顶点且过A、D两点的抛物线与以O为顶点且经
过B、C两点的抛物线将正方形分割成几部分,则图中阴影部份的面
积是
某城市居民最低生活保障在2009年是240元,经过连续
两年的增加,到2011年提高到345.6元,则该城市两年最低生活保障的平
均年增长率是 .
如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转
α度,得到△A1BC1,A1B交AC于点E,A1C1分别交AC、BC
于点D、F,下列结论:①∠CDF=α,②A1E=CF,
③DF=FC,④AD =CE,⑤A1F=CE.
其中正确的是 (写出正确结论的序号).
(1)计算:
(2)先化简,再求值
(3)如图,平行四边形ABCD的对角线AC、BD交于点O,E、F在AC上,G、H在BD上,且AF=CE,BH=DG,
求证:AG∥HE
某校开展了以“人生观、价值观”为主题的班队活动,活动结束后,初三(2)班数学兴趣小组提出了5个主要观点并在本班50名学生中进行了调查(要求每位同学只选自己最认可的一项观点),并制成了如下扇形统计图.
(1)该班学生选择“和谐”观点的有 人,在扇形统计图中,“和谐”观点所在扇形区域的圆心角是 度.
(2)如果该校有1500名初三学生,利用样本估计选择“感恩”观点的初三学生约有 人.
(3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查,求恰好选到“和谐”和“感恩”观点的概率(用树状图或列表法分析解答)
某县为鼓励失地农民自主创业,在2010年对60位自主创业的失地农民自主创业的失地农民进行奖励,共计划奖励10万元.奖励标准是:失地农民自主创业连续经营一年以上的给予1000元奖励;自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励.问:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有多少人?
如图,一次函数的图象与反比例函数y1= ( x<0)的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0).当x<–1时,一次函数值大于反比例函数的值,当x>–1时,一次函数值小于反比例函数值.
(1) 求一次函数的解析式;
(2) 设函数y2= (x>0)的图象与y1= (x<0)的图象关于y轴对称.在y2= (x>0)的图象上取一点P(P点的横坐标大于2),过P作PQ⊥x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.
如图,飞机沿水平方向(A、B两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M到飞行路线AB的距离MN.飞机能够测量的数据有俯角和飞行的距离(因安全因素,飞机不能飞到山顶的正上方N处才测飞行距离),请设计一个距离MN的方案,要求:
(1)指出需要测量的数据(用字母表示,并在图中标出);
(2)用测出的数据写出求距离MN的步骤.
已知:在△ABC中,以AC边为直径的⊙O交BC于点D,在劣弧上取一点E使∠EBC = ∠DEC,延长BE依次交AC于G,交⊙O于H.
(1)求证:AC⊥BH
(2)若∠ABC= 45°,⊙O的直径等于10,BD =8,求CE的长.
已知抛物线的顶点是C (0,a) (a>0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点.
(1)求含有常数a的抛物线的解析式;
(2)设点P是抛物线任意一点,过P作PH⊥x轴,垂足是H,求证:PD = PH;
(3)设过原点O的直线l与抛物线在第一象限相交于A、B两点,若DA=2DB,且S△ABD = ,求a的值.
下列运算正确的是( )
A.3a–2a= 1 | B.a2·a3=a6 | C.(a–b)2=a2–2ab+b2 | D.(a+b)2=a2+b2 |
如图,直线AB、CD相交于点E,DF∥AB. 若∠D=70°,
则∠CEB等于( )
A.70° | B.80° |
C.90° | D.110° |
下列运算正确的是
A.x2+ x3 = x5 | B.x4·x2 = x6 | C.x6÷x2 = x3 | D.( x2)3 = x8 |
若⊙O1、⊙O2的半径分别为4和6,圆心距O1O2=8,则⊙O1与⊙O2的位置关系是
A.内切 | B.相交 | C.外切 | D.外离 |
A.图象经过点(1,-1) | B.图象位于第二、四象限 |
C.图象是中心对称图形 | D.当x<0时,y随x的增大而增大 |
某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组
数据,下列说法正确的是
A.平均数为30 | B.众数为29 | C.中位数为31 | D.极差为5 |
小亮从家步行到公交车站台,等公交车去学校. 图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系. 下列说法错误的是
A.他离家8km共用了30min | B.他等公交车时间为6min |
C.他步行的速度是100m/min | D.公交车的速度是350m/min |
如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(-1,4). 将△ABC
沿y轴翻折到第一象限,则点C的对应点C′的坐标是 ▲ .
将两个形状相同的三角板放置在一张矩形纸片上,按图示画线得到四边形
ABCD,则四边形ABCD的形状是 ▲ .
如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若
DE=5,则AB的长为 ▲ .
如图,已知正方形ABCD的边长为12cm,E为CD边上一点,DE=5cm.以点A
为中心,将△ADE按顺时针方向旋转得△ABF,则点E所经过的路径长为 ▲ cm.
将按右侧方式排列.若规定(m,n)表示第m排从左向右
第n个数,则(5,4)与(15,7)表示的两数之积是 ▲ .
小明有3支水笔,分别为红色、蓝色、黑色;有2块橡皮,
分别为白色、灰色.小明从中任意取出1支水笔和1块橡皮配套使用.试用树状图或表格列
出所有可能的结果,并求取出红色水笔和白色橡皮配套的概率.
为迎接建党90周年,某校组织了以“党在我心中”为主题
的电子小报制作比赛,评分结果只有60,70,80,90,100五种.现从中随机抽取部分作
品,对其份数及成绩进行整理,制成如下两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)求本次抽取了多少份作品,并补全两幅统计图;
(2)已知该校收到参赛作品共900份,请估计该校学生比赛成绩达到90分以上(含90分)的作品有多少份?
已知二次函数
(1)在给定的直角坐标系中,画出这个函数的图象;
(2)根据图象,写出当
时,
的取值范围;
(3)若将此图象沿
轴向右平移3个单位,请写出平移后图象所对应的函数关系式.
如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯
罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD="60°." 使用发现,光线最
佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?
如图,在△ABC中,∠C= 90°,以AB上一点O为圆心,
OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.
(1)若AC=6,AB= 10,求⊙O的半径;
(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.
(本小题满分10分)利民商店经销甲、乙两种商品. 现有如下信息:
请根据以上信息,解答下列问题:
(1)甲、乙两种商品的进货单价各多少元?
(2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元. 在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润之和最大?每天的最大利润是多少?
情境观察:将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.
观察图2可知:与BC相等的线段是 ▲ ,∠CAC′= ▲ °.
问题探究:如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q. 试探究EP与FQ之间的数量关系,并证明你的结论.
拓展延伸:如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H. 若AB= k AE,AC= k AF,试探究HE与HF之间的数量关系,并说明理由.
交于点A,且与x轴交于点B.
(1)求点A和点B的坐标;
(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.
①当t为何值时,以A、P、R为顶点的三角形的面积为8?
②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.