2011年初中毕业升学考试(新疆乌鲁木齐卷)数学
2011年第一季度.我省固定资产投资完成475.6亿元.这个数据用科学记数法可表示为( )
A.元 | B.元 | C.元 | D.元 |
如图所示,∠AOB的两边.OA、OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠DEB的度数是( )
A.35° B.70° C.110° D.120°
将一个矩形纸片依次按图(1)、图(2)的方式对折,然后沿图(3)中的虚线裁剪,最后将图(4)的纸再展开铺平,所得到的图案是( )
一个正多边形,它的每一个外角都等于45°,则该正多边形是( )
A.正六边形 | B.正七边形 | C.正八边形 | D.正九边形 |
如图是一个工件的三视图,图中标有尺寸,则这个工件的体积是( l
A.13π | B.17π | C.66π | D.68π |
“五一”节期间,某电器按成本价提高30%后标价,-再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x元,根据题意,下面所列方程正确的是( )
A. | B. |
C. | D. |
如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为 ( )
A.cm B.4cm C.cm D.cm
已知二次函数的图象如图所尔,对称轴为直线x=1,则下列结论正确的是( )
A, B.方程的两根是
C. D.当x>0时,y随x的增大而减小.
.如图,四边形ABCD是平行四边形,添加一个条件__________________,可使它成为矩形.
“十二五”时期,山西将建成中西部旅游强省,以旅游业为龙头的服务业将成为推动山西经济发展的丰要动力.2010年全省全年旅游总收入大约l000亿元,如果到2012年全省每年旅游总收入要达到1440亿元,那么年平均增长率应为___________。
如图是用相同长度的小棒摆戍的一组有规律的图案,图案(1)需要4根小棒,图案(2)需要10根小棒……,按此规律摆下去,第个图案需要小棒________________根(用含有的代数式表示)。
如图,△ABC是等腰直角三角形,∠ACB=90°,AB=AC,把△ABC绕点A按顺时针方向旋转45°后得到△AB’C’,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是___________ (结果保留π)。
如图,已知AB=12;AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,则AE的长是___________。
(本题共2个小题.第1小题8分,第2小题6分,共14分)
(1)先化简。再求值:,其中。
(2)解不等式组:,并把它的解集表示在数轴上。
(本题7分)如图,在平面直角坐标系中,一次函数的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点,DE⊥x轴于点E。已知C点的坐标是(6,),DE=3.
(1)求反比例函数与一次函数的解析式。
(2)根据图象直接回答:当x为何值时,一次函数的值大于反比例函数的值?
(本题8分)小明与小亮玩游戏,他们将牌面数字分别是2,3,4的三张扑克牌兖分洗匀后,背面朝上放在桌面上.规定游戏规则如下:先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再从中随机抽出一张牌,将牌面数字作为个位上的数字.如果组成的两位数恰好是2的倍数.则小明胜;如果组成的两位数恰好是3的倍数.则小亮胜.
你认为这个游戏规则对双方公平吗?请用画数状图或列表的方法说明理由.
(本题9分)如图,△ABC是直角三角形,∠ACB=90°.
(1)实践与操作利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).
①作△ABC的外接圆,圆心为O;
②以线段AC为一边,在AC的右侧作等边△ACD;
③连接BD,交⊙O于点F,连接AE,
(2)综合与运用 在你所作的图中,若AB=4,BC=2,则:
①AD与⊙O的位置关系是______.(2分)
②线段AE的长为__________.(2分)
(本题10分)某班实行小组量化考核制.为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:综合评价得分统计表 (单位:分)
(1)请根据表中的数据完成下表(注:方差的计算结果精确到0.1)
(2)根据综合评价得分统计表中的数据,请在下图中画出乙组综合评价得分的折线统计图.
(3)根据折线统计图中的信息,请你分别对甲、乙两个小组连续六周的学习情况作出简要评价.
(本题7分)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度.他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为 (即AB:BC=),且B、C、E三点在同一条盲线上。请根据以上杀件求出树DE的高度(测倾器的高度忽略不计).
(本题9分)如图(1),Rt△ABC中,∠ACB=-90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F
(1)求证:CE=CF.
(2)将图(1)中的△ADE沿AB向右平移到△A’D’E’的位置,使点E’落在BC边上,其它条件不变,如图(2)所示.试猜想:BE'与CF有怎样的数量关系?请证明你的结论.
甲仓库与乙仓库共存粮450 吨、现从甲仓库运出存粮的60%.从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30 吨。若设甲仓库原来存粮x吨.乙仓库原来存粮y吨,则有
A. | B. |
C. | D. |
右面的条形统计图描述了某车间供热那日加工零件数的情况,则这些供热那日加工零件数的平均数、中位数、众数分别是
A.6.4,10, 4 | B.6, 6,6 | C.6.4,6,6 | D.6,6,10 |
露露从纸上剪下一个圆形和一个扇形纸片(如图),用它们恰好能围成一个圆锥模型。若圆的半径为1,扇形的圆心角等于 ,则此扇形的半径为
如图,梯形ABCD中,AD∥BC,AB=CD,AC⊥BD于点O,∠BAC=60°,若BC=,则此梯形的面积为
A.2 | B. | C. | D. |
如图,等边三角形ABC的边长为3,点P为BC边上一点,且BP=1,点D为AC边上一点,若∠APD=60°,则CD的长为
A. | B. | C. | D.1 |
如图,AD与BC相交于点O,AB∥CD,若∠B=30°,∠D=60°,则∠BOD=____度。
正比例函数的图象与反比例函数的图象有一个交点的坐标是(),则另一个交点的坐标为________。
某居民小区为了了解本小区100户居民家庭的平均月使用塑料袋的数量情况,随机调查了10户居民家庭月使用塑料袋的数量,结果如下(单位:只)
65 70 85 74 86 78 74 92 82 94
根据此统计情况,估计该小区这100户居民家庭平均月使用塑料袋为________只。
按如下程序进行运算:
并规定,程序运行到“结果是否大于65”为一次运算,且运算进行4次才停止。则可输入的整数x的个数是_________
如入,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D。
求证:△BEC≌△CDA
某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(太)与销售单价x(元)满足,设销售这种台灯每天的利润为y(元)。
(1)求y与x之间的函数关系式;
(2)当销售单价定为多少元时.每天的利润最大?最大利润是多少?
(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润.应将销售单价定为多少元?
如图,在ABCD中,∠DAB=60°,AB=2AD,点E、F分别是AB、CD的中点,过点A作AG∥BD,交CB的延长线于点G。
(1)求证:四边形DEBF是菱形;
(2)请判断四边形AGBD是什么特殊四边形?并加以证明。
在一个袋子中,有完全相同的4张卡片,把它们分别编号为l,2,3,4。
(1)从袋子中随机取两张卡片.求取出的卡片编号之和等于4的概率:
(2)先从袋子中随机取一张卡片,记该卡片的编号为a,然后将其放回,再从袋中随机取出一张卡片,级该卡片的编号为b,求满足的概率。
某校课外活动小组,在距离湖面7米高的观测台A处,看湖面上空一热气球P的仰角为37°,看P在湖中的倒影P’的俯角为53°,(P’为P关于湖面的对称点),请你计算出这个热气球P距湖面的高度PC约为多少米?
注:sin37°≈,cos37°≈,tan37°≈;
Sin53°≈,cos53°≈,tan53°≈
小王从A地前往B地,到达后立刻返回,他与A地的距离y(千米)和所用的时间x(小时)之间的函数关系如图所示。
(1)小王从B地返回A地用了多少小时?
(2)求小王出发6小时后距A地多远?
(3)在A、B之间友谊C地,小王从去时途经C地,到返回时路过C地,共用了2小时20分,求A、C两地相距多远?