[江西]2014届江西省七校高三上学期第一次联考文科数学试卷
已知函数f(x)=sin(ωx+)-1最小正周期为,则的图象的一条对称轴的方程是( )
A. | B. | C. | D. |
下列说法:
①命题“存在” 的否定是“对任意的”;
②关于的不等式恒成立,则的取值范围是;
③函数为奇函数的充要条件是;其中正确的个数是( )
A.3 | B.2 | C.1 | D.0 |
如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 ( )
A.9 | B.12 | C.11 | D. |
设A,B,C是△ABC三个内角,且tanA,tanB是方程3x2-5x+1=0的两个实根,那么△ABC是( )
A.钝角三角形 | B.锐角三角形 |
C.等腰直角三角形 | D.以上均有可能 |
.定义在上的偶函数,当x≥0时,,则满足的x取值范围是( )
A.(-1,2) | B.(-2,1) | C.[-1,2] | D.(-2,1] |
定义行列式运算,将函数的图象向左平移()个单位,所得图象对应的函数为奇函数,则的最小值为( )
A. | B. | C. | D. |
程序框图如下:
如果上述程序运行的结果为S=132,那么判断框中横线上应填入的数字是________.
记实数…中的最大数为{…},最小数为min{…}.已知的三边边长为、、(),定义它的倾斜度为则“t=1”是“为等边三角形”的 。
(填充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件)
已知集合A={x|x2-ax+a2-19=0},集合B={x|log2(x2-5x+8)=1},集合C={x|m=1,m≠0,|m|≠1}满足A∩B≠,A∩C=,求实数a的值;
在△ABC中,内角A,B,C所对边长分别为,,,.
(1)求的最大值及的取值范围;
(2)求函数的最大值和最小值.
已知函数,其中为常数.
(1)当时,求函数的单调递增区间;
(2)若任取,求函数在上是增函数的概率.
已知=(cosα,sinα),=(cosβ,sinβ),与之间有关系|k+|=|-k|,其中k>0,(Ⅰ)用k表示;
(Ⅱ)求·的最小值,并求此时与的夹角的大小。
设函数。
(Ⅰ)若时,函数取得极值,求函数的图像在处的切线方程;
(Ⅱ)若函数在区间内不单调,求实数的取值范围。