[河北]2014届河北省石家庄高三上学期调研考试文科数学试卷
设表示直线表示不同的平面,则下列命题中正确的是( )
A.若且,则 | B.若且,则 |
C.若且,则 | D.若且,则 |
把边长为的正方形沿对角线折起,连结,得到三棱锥,其正视图、俯视图均为全等的等腰直角三角形(如图所示),则其侧视图的面积为( )
A. | B. | C. | D. |
若双曲线右顶点为,过其左焦点作轴的垂线交双曲线于两点,且,则该双曲线离心率的取值范围为( )
A. | B. | C. | D. |
已知球,过其球面上三点作截面,若点到该截面的距离是球半径的一半,且,,则球的表面积为( )
A. | B. | C. | D. |
已知各项均为正数的等比数列中,与的等比中项为,则的最小值为( )
A.16 | B.8 | C. | D.4 |
已知函数,则方程恰有两个不同实数根时,实数的取值范围是( )(注:为自然对数的底数)
A. | B. | C. | D. |
某学校共有师生3200人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是 .
已知公差不为0的等差数列的前n项和为,,且成等比数列.
(1)求数列的通项公式;
(2)设,求数列的前n项和.
2013年12月21日上午10时,省会首次启动重污染天气Ⅱ级应急响应,正式实施机车尾号限行,当天某报社为了解公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
(1)完成被调查人员的频率分布直方图;
(2)若从年龄在,的被调查者中各随机选取1人进行追踪调查,求两人中至少有1人赞成“车辆限行”的概率.
如图,四棱锥中,底面是边长为1的正方形,平面, ,,为的中点,在棱上.
(1)求证:;
(2)求三棱锥的体积.
已知函数.
(1)当时,求函数的单调区间;
(2)若时,函数在闭区间上的最大值为,求的取值范围.