[广东]2014届广东珠海高三上学期期末学生学业质量监测文数学卷
学校为了解学生课外读物方面的支出情况,抽取了个同学进行调查,结果显示这些同学的支出都在(单位:元),其中支出在(单位:元)的同学有人,其频率分布直方图如下图所示,则支出在(单位:元)的同学人数是( )
A. | B. | C. | D. |
等比数列共有奇数项,所有奇数项和,所有偶数项和,末项是,则首项( )
A. | B. | C. | D. |
对定义域为的函数,若存在距离为的两条平行直线和,使得当时,恒成立,则称函数在有一个宽度为的通道.有下列函数:①;②;③;④.其中在上通道宽度为的函数是( )
A.①③ | B.②③ | C.②④ | D.①④ |
已知在平面直角坐标系中圆的参数方程为:,(为参数),以为极轴建立极坐标系,直线极坐标方程为:,则圆截直线所得弦长为 .
城市公交车的数量太多容易造成资源的浪费,太少又难以满足乘客需求,为此,某市公交公司在某站台的名候车乘客中随机抽取人,将他们的候车时间作为样本分成组,如下表所示(单位:min):
组别 |
候车时间 |
人数 |
一 |
|
|
二 |
||
三 |
||
四 |
||
五 |
(1)求这名乘客的平均候车时间;
(2)估计这名乘客中候车时间少于分钟的人数;
(3)若从上表第三、四组的人中选人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.
如图,在三棱柱中,四边形为菱形,,四边形为矩形,若,,.
(1)求证:平面;
(2)求证:面;
(3)求三棱锥的体积.
已知数列的各项都是正数,且对任意都有,其中为数列的前项和.
(1)求、;
(2)求数列的通项公式;
(3)设,对任意的,都有恒成立,求实数的取值范围.