北京市东城区示范校高三第二学期综合练习数学文卷
在复平面内,复数对应的点位于( )
A.第一象限 | B.第二象限 | C.第三象限 | D.第四象限 |
.函数的图像可由的图像( )
A.向右平移个单位长度 | B.向左平移个单位长度 |
C.向右平移个单位长度 | D.向左平移个单位长度 |
已知双曲线的两个焦点为,,是此双曲线上一点,
若,,则该双曲线的方程是( )
A. | B. | C. | D. |
一个几何体的三视图如图所示,其中正视图与侧视图都是边长为2的正三角形,
则这个几何体的侧面积为________.
某班50名学生在一次百米测试中,
成绩全部介于13秒与18秒之间,将测试结果
绘制成频率分布直方图(如图),若成绩介于
14秒与16秒之间认为是良好,则该班在这次
测试中成绩良好的人数为_______.
已知两条直线,,两个平面,,给出下面四个命题:
①∥,;②∥,,∥;
③∥,∥∥;④∥,∥, .
其中正确命题的序号是____________.
点从原点出发,每步走一个单位,方向为向上或向右,则走三步时,所有可能终点的横坐标的和为_________;走步时,所有可能终点的横坐标的和为_________.
(本小题12分)袋中有大小、形状相同的红、黑球各两个,现依次不放回地随机取3次,每次取一个球.
(1)试问:一共有多少种不同的结果,请列出所有可能的结果;
(2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率.
(本小题13分)如图,在四棱锥中,
底面是矩形,侧棱PD⊥底面,
,是的中点,作⊥交于点.
(1)证明:∥平面;
(2)证明:⊥平面.
(本小题14分)已知函数.
(1)若,点P为曲线上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程;
(2)若函数在上为单调增函数,试求的取值范围.
.(本小题14分)椭圆的一个顶点为,离心率
(1)求椭圆方程;
(2)若直线与椭圆交于不同的两点,且满足,,求直线的方程.