福建省福州市高三毕业班质检理科数学试卷
“实数”是“复数
(
为虚数单位)的模为
”的( )
A.充分非必要条件 | B.必要非充分条件 |
C.充要条件 | D.既不是充分条件又不是必要条件 |
已知、
是双曲线
的左、右焦点,若双曲线左支上存在一点一点
与点
关于直线
对称,则该双曲线的离心率为( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
若定义在R上的函数f(x)满足f(-x)="f(x)," f(2-x)=f(x),且当x∈[0,1]时,其图象是四分之一圆(如图所示),则函数H(x)= |xex|-f(x)在区间[-3,1]上的零点个数为 ( )
A.5 | B.4 | C.3 | D.2 |
已知函数(
、
、
为常数),当
时取极大值,当
时取极小值,则
的取值范围是( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
5名同学站成一排,其中甲同学不站排头,则不同的排法种数是______________(用数字作答).
已知某几何体的三视图(单位:cm)如图所示,则该几何体的表面积为____________.
在对某渔业产品的质量调研中,从甲、乙两地出产的该产品中各随机抽取10件,测量该产品中某种元素的含量(单位:毫克).下表是测量数据的茎叶图:
规定:当产品中的此种元素含量毫克时为优质品.
(1)试用上述样本数据估计甲、乙两地该产品的优质品率(优质品件数/总件数);
(2)从乙地抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优质品数的分布列及数学期望
.
已知函数.
(1)当时,求函数
的单调递增区间;
(2)设的内角
的对应边分别为
,且
若向量
与向量
共线,求
的值.
如图,直角梯形中,
,点
分别是
的中点,点
在
上,沿
将梯形
翻折,使平面
平面
.
(1)当最小时,求证:
;
(2)当时,求二面角
平面角的余弦值.
已知动圆过定点(1,0),且与直线
相切.
(1)求动圆圆心的轨迹方程;
(2)设是轨迹
上异于原点
的两个不同点,直线
和
的倾斜角分别为
和
,①当
时,求证直线
恒过一定点
;
②若为定值
,直线
是否仍恒过一定点,若存在,试求出定点的坐标;若不存在,请说明理由.
已知矩阵
,若矩阵
属于特征值6的一个特征向量为
,属于特征值1的一个特征向量
.
(1)求矩阵的逆矩阵;
(2)计算
在平面直角坐标系中,以
为极点,
轴非负半轴为极轴建立坐标系,已知曲线
的极坐标方程为
,直线
的参数方程为:
(
为参数),两曲线相交于
两点.
(1)写出曲线的直角坐标方程和直线
的普通方程;
(2)若求
的值.