高考数学(文)二轮专题复习与测试专题1第5课时练习卷
已知曲线f(x)=ln x在点(x0,f(x0))处的切线经过点(0,-1),则x0的值为( )
A. | B.1 |
C.e | D.10 |
已知e为自然对数的底数,则函数y=xex的单调递增区间是( )
A.[-1,+∞) | B.(-∞,-1] |
C.[1,+∞) | D.(-∞,1] |
函数f(x)的定义域为(0,+∞),且f(x)>0,f′(x)>0,则函数y=xf(x)( )
A.存在极大值 | B.存在极小值 |
C.是增函数 | D.是减函数 |
函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式ex·f(x)>ex+1的解集为( )
A.{x|x>0} | B.{x|x<0} |
C.{x|x<-1或x>1} | D.{x|x<-1或0<x<1} |
设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是( )
A.∀x∈R,f(x)≤f(x0) |
B.-x0是f(-x)的极小值点 |
C.-x0是-f(x)的极小值点 |
D.-x0是-f(-x)的极小值点 |
已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:
①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;
④f(0)f(3)<0.
其中正确结论的序号是( )
A.①③ | B.①④ |
C.②③ | D.②④ |
若函数f(x)=x3-x2+ax+4恰在[-1,4]上单调递减,则实数a的值为________.
设函数y=f(x),x∈R的导函数为f′(x),且f(x)=f(-x),f′(x)<f(x).则下列三个数:ef(2),f(3),e2f(-1)从小到大依次排列为________.(e为自然对数的底数)
设f(x)=aln x++x+1,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.
(1)求a的值;
(2)求函数f(x)的极值.
已知函数f(x)=+ln x.
(1)当a=时,求f(x)在[1,e]上的最大值和最小值;
(2)若函数g(x)=f(x)-x在[1,e]上为增函数,求正实数a的取值范围.