苏教版选修2-3高二数学双基达标3章练习卷
某考察团对全国10大城市进行职工人均平均工资x与居民人均消费y进行统计调查,y与x具有相关关系,线性回归方程=0.66x+1.562(单位:千元),若某城市居民消费水平为7.675,估计该城市消费额占人均工资收入的百分比约为________.
变量x与y具有线性相关关系,当x取值为16,14,12,8时,通过观测得到y的值分别为11,9,8,5.若在实际问题中,y的预报值最大是10,则x的最大取值不能超过________.
已知x,Y之间的数据如下表所示,则Y与x之间的线性回归直线一定过点________.
x |
1.08 |
1.12 |
1.19 |
1.28 |
Y |
2.25 |
2.37 |
2.40 |
2.55 |
冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示:
|
杂质高 |
杂质低 |
旧设备 |
37 |
121 |
新设备 |
22 |
202 |
根据以上数据,则有________.
计算下面事件A与事件B的2×2列联表的χ2统计量值,得χ2≈________,从而得出结论________.
|
B |
总计 |
|
A |
39 |
157 |
196 |
29 |
167 |
196 |
|
总计 |
68 |
324 |
392 |
某单位为了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温.
气温(℃) |
14 |
12 |
8 |
6 |
用电量(度) |
22 |
26 |
34 |
38 |
由表中数据得线性回归方程=x+中=-2,据此预测当气温为5 ℃时,用电量的度数约为________.
分类变量X和Y的列联表如下:
|
Y1 |
Y2 |
总计 |
X1 |
a |
b |
a+b |
X2 |
c |
d |
c+d |
总计 |
a+c |
b+d |
a+b+c+d |
则下列说法正确的是________.
①ad-bc越小,说明X与Y关系越弱;
②ad-bc越大,说明X与Y关系越强;
③(ad-bc)2越大,说明X与Y关系越强;
④(ad-bc)2越接近于0,说明X与Y关系越强.
在研究硝酸钠的可溶性程度时,对于不同的温度观测它在水中的溶解度,得观测结果如下:
温度(x) |
0 |
10 |
20 |
50 |
70 |
溶解度(y) |
66.7 |
76.0 |
85.0 |
112.3 |
128.0 |
由资料看y与x呈线性相关,试求线性回归方程为________.
对有关数据的分析可知,每一立方米混凝土的水泥用量x(单位:kg)与28天后混凝土的抗压度y(单位:kg/cm2)之间具有线性相关关系,其线性回归方程为=0.30x+9.99.根据建设项目的需要,28天后混凝土的抗压度不得低于89.7 kg/cm2,每立方米混凝土的水泥用量最少应为________kg.(精确到0.1 kg)
如果某地的财政收入x与支出y满足线性回归方程y=a+bx+ε(单位:亿元),其中b=0.8,a=2,|ε|≤0.5.若今年该地区的财政收入为10亿元,则年支出预计不会超出________亿元.
在调查男女同学是否喜爱篮球的情况中,已知男同学喜爱篮球的为28人,不喜爱篮球的也是28人,而女同学喜爱篮球的为28人,不喜爱篮球的为56人,
(1)根据以上数据建立一个2×2的列联表;
(2)试判断是否喜爱篮球与性别有关?
已知某地每单位面积菜地年平均使用氮肥量x(kg)与每单位面积蔬菜年平均产量y(t)之间的关系有如下数据:
年份 |
1985 |
1986 |
1987 |
1988 |
1989 |
1990 |
1991 |
1992 |
x(kg) |
70 |
74 |
80 |
78 |
85 |
92 |
90 |
95 |
y(t) |
5.1 |
6.0 |
6.8 |
7.8 |
9.0 |
10.2 |
10.0 |
12.0 |
|
||||||||
年份 |
1993 |
1994 |
1995 |
1996 |
1997 |
1998 |
1999 |
|
x(kg) |
92 |
108 |
115 |
123 |
130 |
138 |
145 |
|
y(t) |
11.5 |
11.0 |
11.8 |
12.2 |
12.5 |
12.8 |
13.0 |
|
(1)求x与y之间的相关系数,并检验是否线性相关;
(2)若线性相关,求蔬菜产量y与使用氮肥量x之间的回归直线方程,并估计每单位面积施肥150 kg时,每单位面积蔬菜的年平均产量.
(已知数据:=101,≈10.113 3,=161 125,=1 628.55,=16 076.8)
某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:
甲厂:
分组 |
[29.86,29.90) |
[29.90,29.94) |
[29.94,29.98) |
[29.9830.02), |
[30.02,30.06) |
[30.06,30.10) |
[30.10,30.14) |
频数 |
12 |
63 |
86 |
182 |
92 |
61 |
4 |
乙厂:
分组 |
[29.86,29.90) |
[29.90,29.94) |
[29.94,29.98) |
[29.9830.02), |
[30.02,30.06) |
[30.06,30.10) |
[30.10,30.14) |
频数 |
29 |
71 |
85 |
159 |
76 |
62 |
18 |
(1)试分别估计两个分厂生产的零件的优质品率;
(2)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”?
|
甲厂 |
乙厂 |
合计 |
优质品 |
|
|
|
非优质品 |
|
|
|
合 计 |
|
|
|
附:
P(χ2≥x0) |
0.05 |
0.01 |
x0 |
3.841 |
6.635 |
在电阻碳含量对于电阻的效应研究中,得到如下表所示的数据:
含碳量 (x/%) |
0.10 |
0.30 |
0.40 |
0.55 |
0.70 |
0.80 |
0.95 |
20 ℃时电阻 (y/Ω) |
15 |
18 |
19 |
21 |
22.6 |
23.8 |
26 |
(1)求出y与x的相关系数并判断相关性;
(2)求出电阻y关于含碳量x之间的回归直线方程.
某商场经营一批进价是30元/台的小商品,在市场试验中发现,此商品的销售单价x(x取整数)元与日销售量y台之间有如下关系:
x |
35 |
40 |
45 |
50 |
y |
56 |
41 |
28 |
11 |
(1)画出散点图,并判断y与x是否具有线性相关关系?
(2)求日销售量y对销售单价x的线性回归方程;
(3)设经营此商品的日销售利润为P元,根据(1)写出P关于x的函数关系式,并预测当销售单价x为多少元时,才能获得最大日销售利润.
想象一下一个人从出生到死亡,在每个生日都测量身高,并作出这些数据的散点图,这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析,下表是一位母亲给儿子做的成长记录:
年龄/周岁 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
身高/cm |
91.8 |
97.6 |
104.2 |
110.9 |
115.6 |
122.0 |
128.5 |
|
|||||||
年龄/周岁 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
身高/cm |
134.2 |
140.8 |
147.6 |
154.2 |
160.9 |
167.5 |
173.0 |
(1)年龄(解释变量)和身高(预报变量)之间具有怎样的相关关系?
(2)如果年龄相差5岁,则身高有多大差异(3~16岁之间)?
(3)如果身高相差20 cm,其年龄相差多少(3~16岁之间)?
(4)计算残差,说明该函数模型是否能够较好地反映年龄与身高的关系,说明理由.