广东省湛江市高三高考模拟测试二理科数学试卷
在复平面内,复数对应的点位于( )
A.第一象限 | B.第二象限 | C.第三象限 | D.第四象限 |
一个几何体的正视图、侧视图、和俯视图形状都相同,大小均相等,则这个几何体不可以是( )
A.球 | B.三棱锥 | C.正方体 | D.圆柱 |
下列命题正确的是( )
A.若两条直线和同一个平面所成的角相等,则这两条直线平行 |
B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 |
C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行 |
D.若两个平面都垂直于第三个平面,则这两个平面平行 |
已知双曲线的离心率为,一个焦点与抛物线的焦点相同,则双曲线的渐近线方程为( )
A. | B. | C. | D. |
对于任意两个正整数、,定义某种运算“※”,法则如下:当、都是正奇数时,※=;当、不全为正奇数时,※=.则在此定义下,集合中的元素个数是( )
A. | B. | C. | D. |
某小区有个连在一起的车位,现有辆不同型号的车需要停放,如果要求剩余的个车位连在一起,那么不同的停放方法共有 __________种.(用数字作答)
在长为的线段上任取一点,现作一矩形,邻边长分别等于线段、的长,则该矩形面积小于的概率为 .
如图所示,圆的直径,为圆周上一点,,过作圆的切线,则点到直线的距离___________.
某中学将名高一新生分成水平相同的甲、乙两个“平行班”,每班人,吴老师采用、两种不同的教学方式分别在甲、乙两个班进行教学实验.为了解教学效果,期末考试后,分别从两个班级中各随机抽取名学生的成绩进行统计,作出的茎叶图如下:
记成绩不低于分者为“成绩优秀”.
(1)在乙班样本的个个体中,从不低于分的成绩中随机抽取个,记随机变量为抽到“成绩优秀”的个数,求的分布列及数学期望;
(2)由以上统计数据填写下面列联表,并判断有多大把握认为“成绩优秀”与教学方式有关?
|
甲班(方式) |
乙班(方式) |
总计 |
成绩优秀 |
|
|
|
成绩不优秀 |
|
|
|
总计 |
|
|
|
在如图所示的几何体中,四边形为平行四边形,,平面,,,,.
(1)若是线段的中点,求证:平面;
(2)若,求二面角的余弦值.
已知等差数列的首项,公差,且、、分别是等比数列的、、.
(1)求数列和的通项公式;
(2)设数列对任意正整数均有成立,求的值.
如图,点是椭圆的一个顶点,的长轴是圆的直径,、是过点且互相垂直的两条直线,其中交圆于、两点,交椭圆于另一点.
(1)求椭圆的方程;
(2)求面积的最大值及取得最大值时直线的方程.