上海市静安、杨浦、青浦、宝山四区高考模拟文科数学试卷
已知圆锥的母线长为,侧面积为,则此圆锥的体积为__________.(结果中保留)
在平面直角坐标系中,若中心在坐标原点的双曲线过点,且它的一个顶点与抛物线的焦点重合,则该双曲线的方程为 .
从5男3女8位志愿者中任选3人参加冬奥会火炬接力活动,所选3人中恰有两位女志愿者的概率是 .
的定义域为实数集,对于任意的都有.若在区间上函数恰有四个不同的零点,则实数的取值范围是 .
“”是“函数的最小正周期为”的( ).
A.充分必要条件 | B.充分不必要条件 |
C.必要不充分条件 | D.既不充分又必要条件 |
若圆柱的底面直径和高都与球的直径相等,圆柱、球的表面积分别记为、,则:=( ).
A.1:1 | B.2:1 | C.3:2 | D.4:1 |
已知向量,满足:,且().则向量与向量的夹角的最大值为( ).
A. | B. | C. | D. |
已知几何体由正方体和直三棱柱组成,其三视图和直观图(单位:cm)如图所示.设两条异面直线和所成的角为,求的值.
某公司承建扇环面形状的花坛如图所示,该扇环面花坛是由以点为圆心的两个同心圆弧、弧以及两条线段和围成的封闭图形.花坛设计周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米(),圆心角为弧度.
(1)求关于的函数关系式;
(2)在对花坛的边缘进行装饰时,已知两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,当为何值时,取得最大值?
已知椭圆的右焦点,长轴的左、右端点分别为,且.
(1)求椭圆的方程;
(2)过焦点斜率为()的直线交椭圆于两点,弦的垂直平分线与轴相交于点. 试问椭圆上是否存在点使得四边形为菱形?若存在,求的值;若不存在,请说明理由.
已知数列满足(为常数,)
(1)当时,求;
(2)当时,求的值;
(3)问:使恒成立的常数是否存在?并证明你的结论.